Sparse geometric image representations with bandelets

This paper introduces a new class of bases, called bandelet bases, which decompose the image along multiscale vectors that are elongated in the direction of a geometric flow. This geometric flow indicates directions in which the image gray levels have regular variations. The image decomposition in a bandelet basis is implemented with a fast subband-filtering algorithm. Bandelet bases lead to optimal approximation rates for geometrically regular images. For image compression and noise removal applications, the geometric flow is optimized with fast algorithms so that the resulting bandelet basis produces minimum distortion. Comparisons are made with wavelet image compression and noise-removal algorithms.

[1]  Albert Cohen,et al.  Nonlinear Subdivision Schemes: Applications to Image Processing , 2002, Tutorials on Multiresolution in Geometric Modelling.

[2]  Martin Vetterli,et al.  Wavelet footprints: theory, algorithms, and applications , 2003, IEEE Trans. Signal Process..

[3]  I. Johnstone,et al.  Ideal denoising in an orthonormal basis chosen from a library of bases , 1994 .

[4]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[5]  Y. Meyer Wavelets and Operators , 1993 .

[6]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[7]  James H. Elder,et al.  Are Edges Incomplete? , 1999, International Journal of Computer Vision.

[8]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[9]  Thierry Blu,et al.  MOMS: maximal-order interpolation of minimal support , 2001, IEEE Trans. Image Process..

[10]  Minh N. Do,et al.  Rat e-distortion optimized tree structured compression algorithms for piecewise smooth images , 2005 .

[11]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[12]  Andrew R. Barron,et al.  Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.

[13]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[14]  Stefan Carlsson,et al.  Sketch based coding of grey level images , 1988 .

[15]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[16]  Justin K. Romberg,et al.  Rate-distortion optimized image compression using wedgelets , 2002, Proceedings. International Conference on Image Processing.

[17]  Hamid Krim,et al.  Minimax Description Length for Signal Denoising and Optimized Representation , 1999, IEEE Trans. Inf. Theory.

[18]  Stéphane Mallat,et al.  Image compression with geometrical wavelets , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[19]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[20]  Richard G. Baraniuk,et al.  Multiscale image processing using normal triangulated meshes , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[21]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[22]  P. Massart,et al.  From Model Selection to Adaptive Estimation , 1997 .

[23]  E. L. Pennec,et al.  Adaptation of regular grid filterings to irregular grids , 2002 .

[24]  Journal de Mathématiques pures et appliquées , 1889 .

[25]  Y. Meyer,et al.  Wavelets and Operators: Frontmatter , 1993 .

[26]  Stéphane Mallat,et al.  Analysis of low bit rate image transform coding , 1998, IEEE Trans. Signal Process..

[27]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[28]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[29]  R. DeVore,et al.  Nonlinear Approximation and the Space BV(R2) , 1999 .

[30]  K Ramchandran,et al.  Best wavelet packet bases in a rate-distortion sense , 1993, IEEE Trans. Image Process..

[31]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  M. Vetterli,et al.  Rate-Distortion Optimized Tree-Structured Compression Algorithms for Piecewise , 2005 .

[33]  S. Mallat A wavelet tour of signal processing , 1998 .

[34]  R. DeVore,et al.  Multiscale decompositions on bounded domains , 2000 .

[35]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[36]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[37]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[38]  Pierre Moulin,et al.  Complexity-regularized image denoising , 2001, IEEE Trans. Image Process..

[39]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[40]  Minh N. Do,et al.  Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images , 2005, IEEE Transactions on Image Processing.

[41]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[42]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[43]  Xiaolin Wu,et al.  Image compression based on multi-scale edge compensation , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[44]  Xiaohui Xue,et al.  Image Representation Based on Multi-Scale EdgeCompensation , 1999 .

[45]  Eero P. Simoncelli,et al.  Image Denoising using Gaussian Scale Mixtures in the Wavelet Domain , 2002 .

[46]  Y. Meyer,et al.  Bases d'ondelettes dans des ouverts de Rn , 1989 .