Influence of the binder nature on the performance and cycle life of activated carbon electrodes in electrolytes containing Li-salt

[1]  M. Wohlfahrt‐Mehrens,et al.  Electrochemical behavior and stability of a commercial activated carbon in various organic electrolyte combinations containing Li-salts , 2016 .

[2]  Margret Wohlfahrt-Mehrens,et al.  Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors' electrodes , 2016 .

[3]  S. Passerini,et al.  Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder , 2015 .

[4]  Patryk Przygocki,et al.  Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors , 2015 .

[5]  Long Zhang,et al.  High energy density Li-ion capacitor assembled with all graphene-based electrodes , 2015 .

[6]  Seiji Kumagai,et al.  Rate and cycle performances of supercapacitors with different electrode thickness using non-aqueous electrolyte , 2015 .

[7]  S. Komaba,et al.  Degradation mechanisms of electric double layer capacitors with activated carbon electrodes on high voltage exposure , 2015 .

[8]  Siwei Li,et al.  Micro Li-ion capacitor with activated carbon/graphite configuration for energy storage , 2015 .

[9]  Feiyu Kang,et al.  A high performance Li-ion capacitor constructed with Li 4 Ti 5 O 12 /C hybrid and porous graphene macroform , 2015 .

[10]  Jim P. Zheng,et al.  The effect of lithium loadings on anode to the voltage drop during charge and discharge of Li-ion capacitors , 2015 .

[11]  V. Presser,et al.  Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes , 2015 .

[12]  Xiaochuan Wei,et al.  Hybrid supercapacitors integrated rice husk based activated carbon with LiMn2O4 , 2015 .

[13]  Akshay Jain,et al.  Nanostructured spinel LiNi0.5Mn1.5O4 as new insertion anode for advanced Li-ion capacitors with high power capability , 2015 .

[14]  Montse Casas-Cabanas,et al.  Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors , 2014 .

[15]  K. Edström,et al.  Porosity Blocking in Highly Porous Carbon Black by PVdF Binder and Its Implications for the Li–S System , 2014 .

[16]  F. Béguin,et al.  Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte , 2014 .

[17]  Shu-Lei Chou,et al.  Small things make a big difference: binder effects on the performance of Li and Na batteries. , 2014, Physical Chemistry, Chemical Physics - PCCP.

[18]  Jim P. Zheng,et al.  Development and characterization of Li-ion capacitor pouch cells , 2014 .

[19]  S. Mitra,et al.  Electrochemical Properties of Spinel Cobalt Ferrite Nanoparticles with Sodium Alginate as Interactive Binder , 2014 .

[20]  W. Bauer,et al.  Rheological properties and stability of NMP based cathode slurries for lithium ion batteries , 2014 .

[21]  M. Wohlfahrt‐Mehrens,et al.  Strategies to reduce the resistance sources on Electrochemical Double Layer Capacitor electrodes , 2013 .

[22]  A. Wokaun,et al.  A reliable determination method of stability limits for electrochemical double layer capacitors , 2013 .

[23]  A. Balducci,et al.  Ionic liquids in supercapacitors , 2013 .

[24]  Margret Wohlfahrt-Mehrens,et al.  Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries , 2012 .

[25]  Martin Winter,et al.  Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black , 2011 .

[26]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[27]  Martin Winter,et al.  Composite LiFePO 4/AC high rate performance electrodes for Li-ion capacitors , 2011 .

[28]  Alexander Wokaun,et al.  Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages , 2010 .

[29]  K. Kaneko,et al.  Continuous monitoring of aluminum corrosion process in deaerated water , 2007 .

[30]  Mark E. Orazem,et al.  Enhanced Graphical Representation of Electrochemical Impedance Data , 2006 .

[31]  Mo-hua Yang,et al.  Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder , 2005 .

[32]  Wendy G. Pell,et al.  Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes , 2004 .

[33]  Glenn G. Amatucci,et al.  Power-ion battery: Bridging the gap between Li-ion and supercapacitor chemistries , 2004 .

[34]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[35]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[36]  Kang Xu,et al.  Toward Reliable Values of Electrochemical Stability Limits for Electrolytes , 1999 .

[37]  A. Balducci,et al.  Natural Cellulose: A Green Alternative Binder for High Voltage Electrochemical Double Layer Capacitors Containing Ionic Liquid-Based Electrolytes , 2014 .

[38]  M. Ishikawa,et al.  Ultrahigh-performance nonaqueous electric double-layer capacitors using an activated carbon composite electrode with alginate , 2013 .

[39]  Martin Winter,et al.  Natural, cheap and environmentally friendly binder for supercapacitors , 2013 .