Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft
暂无分享,去创建一个
Abstract The terminal velocity of cloud and precipitation size drops has been analyzed for three physically distinct flow regimes: 1) slip flow about a water drop treated as rigid sphere at negligible Reynolds numbers, 2) continuum flow past a water drop treated as a rigid sphere with a steady wake at low and intermediate Reynolds numbers, and 3) continuum flow around a non-circulating water drop of equilibrium shape with an unsteady wake at moderate to large Reynolds numbers. In the lower regime the effect of slip was given by the first-order Knudsen number correction to Stokes drag. In the middle regime a semiempirical drag relation for a rigid sphere was used to obtain a formula for the Reynolds number in terms of the Davies number. In the upper regime a correlation of wind tunnel measurements on falling drops was used in conjunction with sea level terminal velocities for raindrops to obtain a formula for the Reynolds number in terms of the Bond number and physical property number. The result for the u...