An Adaptive Scheme for Subdivision Surfaces based on Triangular Meshes

One problem in subdivision surfaces is that the number of meshes growsquicklyaftereverysubdivisionstep. Thenumberofmeshesofthesubdivi- sionsurfaceisusuallyhugeandtheschemeisdi-culttomanipulate. Subdivision schemesarecostintensiveathigherlevelsofsubdivision. Inthispaper,weintro- duceanadaptivesubdivision schemeforsubdivision surfacesbasedontriangular meshes. This schemeworkswith the new subdivision rules and the biggest angle between the normal vectors of adjacent faces of a vertex is considered as error estimation and termed CA. The regular subdivision process is modifled to stop at the ∞at areas, so we can represent surfaces with lower cost when compared with those obtained by regularsubdivision schemes. In our scheme,wetakecare of the T-junction (cracking) problem and propose our solution. We compare our methodsforvarioustriangularmeshesand presentourresults.

[1]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[2]  Ahmad H. Nasri,et al.  Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.

[3]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[4]  Heinrich Müller,et al.  Adaptive subdivision curves and surfaces , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[5]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[6]  G. Farin Designing C1 surfaces consisting of triangular cubic patches , 1982 .

[7]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[8]  Ashish Amresh,et al.  Adaptive Subdivision Schemes for Triangular Meshes , 2003 .

[9]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[10]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[11]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[14]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[15]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[16]  Demetri Terzopoulos,et al.  Adaptive meshes and shells: irregular triangulation, discontinuities, and hierarchical subdivision , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[18]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[19]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .