Parallel mining frequent patterns over big transactional data in extended mapreduce
暂无分享,去创建一个
[1] Hui Chen,et al. Mining frequent patterns in a varying-size sliding window of online transactional data streams , 2012, Inf. Sci..
[2] Sanjay Ghemawat,et al. MapReduce: a flexible data processing tool , 2010, CACM.
[3] ShimKyuseok. MapReduce algorithms for big data analysis , 2012, VLDB 2012.
[4] Won Suk Lee,et al. Finding recent frequent itemsets adaptively over online data streams , 2003, KDD '03.
[5] Kyuseok Shim,et al. MapReduce Algorithms for Big Data Analysis , 2012, Proc. VLDB Endow..
[6] Wei Fan,et al. Mining big data: current status, and forecast to the future , 2013, SKDD.
[7] Bart Goethals,et al. A tight upper bound on the number of candidate patterns , 2001, Proceedings 2001 IEEE International Conference on Data Mining.
[8] Jian Pei,et al. Mining frequent patterns without candidate generation , 2000, SIGMOD '00.
[9] Gilad Mishne,et al. Fast data in the era of big data: Twitter's real-time related query suggestion architecture , 2012, SIGMOD '13.
[10] Alexandros Labrinidis,et al. Challenges and Opportunities with Big Data , 2012, Proc. VLDB Endow..
[11] Michael C. Schatz,et al. Rapid parallel genome indexing with MapReduce , 2011, MapReduce '11.
[12] Jorge-Arnulfo Quiané-Ruiz,et al. Efficient Big Data Processing in Hadoop MapReduce , 2012, Proc. VLDB Endow..
[13] Shamkant B. Navathe,et al. An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.
[14] Ramakrishnan Srikant,et al. Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.
[15] J. Manyika. Big data: The next frontier for innovation, competition, and productivity , 2011 .
[16] Hongjun Lu,et al. A false negative approach to mining frequent itemsets from high speed transactional data streams , 2006, Inf. Sci..