Percutaneous Intrapericardial Interventions Using a Highly Articulated Robotic Probe

In order to overcome the limitations of currently available assistive technologies for minimally invasive surgery (MIS), we have developed a novel highly articulated robotic probe (HARP) that can exploit its snake-like structure to navigate in a confined anatomical environment while minimally interacting with the environment along its path. We believe that for procedures involving epicardial interventions on the beating heart, cardiac MIS can be effectively realized with the HARP, entering the pericardial cavity through a subxiphoid port, reaching remote intrapericardial locations on the epicardium without causing hemodynamic and electrophysiologic interference and delivering therapeutic interventions under the direct control of the surgeon

[1]  Keisuke Yamamoto,et al.  Multi-link active catheter snake-like motion , 1996, Robotica.

[2]  Koji Ikuta,et al.  Hyper Redundant Active Endoscope for Minimally Invasive Surgery , 1998 .

[3]  D. Kass,et al.  Retiming the failing heart: principles and current clinical status of cardiac resynchronization. , 2002, Journal of the American College of Cardiology.

[4]  Koji Ikuta,et al.  Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[5]  広瀬 茂男,et al.  Biologically inspired robots : snake-like locomotors and manipulators , 1993 .

[6]  Russell H. Taylor,et al.  A dexterous system for laryngeal surgery , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  Ender A. Finol,et al.  An intensity-based 3D reconstruction protocol for cardiovascular structures , 2005 .

[8]  L. Cohn,et al.  Minimally invasive cardiac valve surgery improves patient satisfaction while reducing costs of cardiac valve replacement and repair. , 1997, Annals of surgery.

[9]  Dominiek Reynaerts,et al.  Design of an advanced tool guiding system for robotic surgery , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[10]  Yoshihiko Nakamura,et al.  Shape-memory-alloy active forceps for laparoscopic surgery , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[11]  Mary Frecker,et al.  Analytical modeling of a segmented unimorph actuator using electrostrictive P(VDF-TrFE) copolymer , 2004 .

[12]  M. Esashi,et al.  An active catheter with integrated circuit for communication and control , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[13]  Makoto Nokata,et al.  Biomedical micro robots driven by miniature cybernetic actuator , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[14]  David Schwartzman,et al.  Left Heart Pacing Lead Implantation Using Subxiphoid Videopericardioscopy , 2003, Journal of cardiovascular electrophysiology.

[15]  Philippe Bidaud,et al.  An Active Tubular Polyarticulated Micro-System for Flexible Endoscope , 2000, ISER.

[16]  Marco A. Zenati,et al.  1086-137 Impairment of left atrial appendage mechanical function following electrical isolation with epicardial radiofrequency bipolar ablation , 2004 .

[17]  Maria Chiara Carrozza,et al.  A novel mechatronic tool for computer-assisted arthroscopy , 2000, IEEE Transactions on Information Technology in Biomedicine.

[18]  Jean-Sébastien Plante,et al.  Manipulation in MRI devices using electrostrictive polymer actuators: with an application to reconfigurable imaging coils , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[19]  Roy Kornbluh,et al.  Electrostrictive polymer artificial muscle actuators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[20]  T. Huang,et al.  Minimal Access Surgery in Managing Anterior Lumbar Disorders , 2001, Clinical orthopaedics and related research.

[21]  S. M. Nymberg,et al.  Video-assisted thoracoscopic releases of scoliotic anterior spines. , 1996, AORN journal.

[22]  Shigeo Hirose,et al.  Biologically Inspired Robots: Snake-Like Locomotors and Manipulators , 1993 .

[23]  A. Toniato,et al.  Laparoscopic versus open adrenalectomy: outcome in 35 consecutive patients. , 2000, International journal of surgical investigation.

[24]  Dominiek Reynaerts,et al.  Shape memory micro-actuation for a gastro-intestinal intervention system , 1999 .