Squeezed-state quantum key distribution with a Rindler observer

Lengthening the maximum transmission distance of quantum key distribution plays a vital role in quantum information processing. In this paper, we propose a directional squeezed-state protocol with signals detected by a Rindler observer in the relativistic quantum field framework. We derive an analytical solution to the transmission problem of squeezed states from the inertial sender to the accelerated receiver. The variance of the involved signal mode is closer to optimality than that of the coherent-state-based protocol. Simulation results show that the proposed protocol has better performance than the coherent-state counterpart especially in terms of the maximal transmission distance.

[1]  John Preskill,et al.  Secure quantum key distribution using squeezed states , 2001 .

[2]  N. Walk,et al.  Quantum communication with an accelerated partner , 2013 .

[3]  David Edward Bruschi,et al.  Quantum estimation of the Schwarzschild spacetime parameters of the Earth , 2014, 1409.0234.

[4]  N. Walk,et al.  Quantum key distribution without sending a quantum signal , 2014, 1409.2061.

[5]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[6]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[7]  T. Ralph,et al.  Quantum repeaters using continuous-variable teleportation , 2016, 1611.02794.

[8]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[9]  Daiqin Su,et al.  Quantum communication in the presence of a horizon , 2014, 1507.00402.

[10]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[11]  Stephen W. Hawking,et al.  Particle Creation by Black Holes , 1993, Resonance.

[12]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[13]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[14]  T Franz,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2011, Physical review letters.

[15]  Timothy C. Ralph,et al.  A Guide to Experiments in Quantum Optics , 1998 .

[16]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[17]  David Edward Bruschi,et al.  Spacetime effects on satellite-based quantum communications , 2013, 1309.3088.

[18]  Lishan Liu,et al.  Positive solutions for nonlinear fractional semipositone differential equation with nonlocal boundary conditions , 2016 .

[19]  T. Ralph,et al.  Entanglement between the future and the past in the quantum vacuum. , 2010, Physical review letters.

[20]  Timothy C. Ralph,et al.  Extraction of timelike entanglement from the quantum vacuum , 2011, 1101.2565.

[21]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[22]  Radim Filip,et al.  Continuous variable quantum key distribution with modulated entangled states , 2011, Nature Communications.

[23]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[24]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[25]  Vitus Händchen,et al.  Stable control of 10 dB two-mode squeezed vacuum states of light. , 2013, Optics express.

[26]  Atsushi Higuchi,et al.  The Unruh effect and its applications , 2007, 0710.5373.

[27]  Gerardo Adesso,et al.  Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies , 2013, Scientific Reports.

[28]  W. Unruh Notes on black-hole evaporation , 1976 .

[29]  Valentina Baccetti,et al.  Testing the effects of gravity and motion on quantum entanglement in space-based experiments , 2013, New Journal of Physics.