Locating P poly Optimally in the Extended Low Hierarchy

The low hierarchy within NP and the extended low hierarchy have turned out to be very useful in classifying many interesting language classes We relocate P poly from the third level EL Balc azar et al to the third level EL of the extended low hierarchy The location of P poly in EL is optimal since as shown by Allender and Hemachandra there exist sparse sets that are not contained in the next lower level EL As a consequence of our result all NP sets in P poly are relocated from the third level L Ko and Sch oning to the third level L P of the low hierarchy

[1]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[2]  Ronald V. Book,et al.  Tally Languages and Complexity Classes , 1974, Inf. Control..

[3]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[4]  Vaughan R. Pratt,et al.  Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..

[5]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[6]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[7]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[8]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[9]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[10]  Alan L. Selman,et al.  P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP , 1979, ICALP.

[11]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[12]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[13]  Timothy J. Long Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..

[14]  Juris Hartmanis On Sparse Sets in NP - P , 1983, Inf. Process. Lett..

[15]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[16]  J. Hartmanis,et al.  Computation Times of NP Sets of Different Densities , 1984, Theor. Comput. Sci..

[17]  Larry J. Stockmeyer,et al.  On Approximation Algorithms for #P , 1985, SIAM J. Comput..

[18]  Ker-I Ko,et al.  On Circuit-Size Complexity and the Low Hierarchy in NP , 1985, SIAM J. Comput..

[19]  L. Hemachandra The strong exponential hierarchy collapses , 1987, STOC 1987.

[20]  Jim Kadin,et al.  P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..

[21]  Jürgen Kämper,et al.  Non-Uniform Proof System: A New Framework to Describe Non-Uniform and Probabalistic Complexity Classes , 1988, FSTTCS.

[22]  Marek Piotrów,et al.  On Complexity of Counting , 1988, MFCS.

[23]  James Andrew Kadin Restricted Turing reducibilities and the structure of the polynomial time hierarchy , 1988 .

[24]  Desh Ranjan,et al.  Structural complexity theory: recent surprises (invited) , 1990 .

[25]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[26]  R. Beigel,et al.  Bounded Queries to SAT and the Boolean Hierarchy , 1991, Theor. Comput. Sci..

[27]  José L. Balcázar,et al.  Strong and Robustly Strong Polynomial-Time Reducibilities to Sparse Sets , 1991, Theor. Comput. Sci..

[28]  Samuel R. Buss,et al.  On Truth-Table Reducibility to SAT , 1991, Inf. Comput..

[29]  Osamu Watanabe,et al.  How hard are sparse sets? , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[30]  Ricard Gavaldà,et al.  Kolmogorov randomness and its applications to structural complexity theory , 1992 .

[31]  Ricard Gavaldà Bounding the complexity of advice functions , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[32]  Eric Allender,et al.  Lower bounds for the low hierarchy , 1992, JACM.

[33]  Osamu Watanabe,et al.  On the Computational Complexity of Small Descriptions , 1993, SIAM J. Comput..

[34]  Edith Hemaspaandra,et al.  SPARSE reduces conjunctively to TALLY , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[35]  Timothy J. Long,et al.  The Extended Low Hierarchy is an Infinite Hierarchy , 1994, SIAM J. Comput..

[36]  Thomas Thierauf,et al.  Complexity-Restricted Advice Functions , 1994, SIAM J. Comput..

[37]  Osamu Watanabe,et al.  Instance complexity , 1994, JACM.

[38]  Uwe Schning GRAPH ISOMORPHISM IS IN THE LOW HIERARCHY , 2022 .