Locating P poly Optimally in the Extended Low Hierarchy
暂无分享,去创建一个
[1] Albert R. Meyer,et al. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.
[2] Ronald V. Book,et al. Tally Languages and Complexity Classes , 1974, Inf. Control..
[3] R.E. Ladner,et al. A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..
[4] Vaughan R. Pratt,et al. Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..
[5] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[6] Celia Wrathall,et al. Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[7] Juris Hartmanis,et al. On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..
[8] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[9] Nicholas Pippenger,et al. On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[10] Alan L. Selman,et al. P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP , 1979, ICALP.
[11] Larry Carter,et al. Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..
[12] Richard J. Lipton,et al. Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.
[13] Timothy J. Long. Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..
[14] Juris Hartmanis. On Sparse Sets in NP - P , 1983, Inf. Process. Lett..
[15] Michael Sipser,et al. A complexity theoretic approach to randomness , 1983, STOC.
[16] J. Hartmanis,et al. Computation Times of NP Sets of Different Densities , 1984, Theor. Comput. Sci..
[17] Larry J. Stockmeyer,et al. On Approximation Algorithms for #P , 1985, SIAM J. Comput..
[18] Ker-I Ko,et al. On Circuit-Size Complexity and the Low Hierarchy in NP , 1985, SIAM J. Comput..
[19] L. Hemachandra. The strong exponential hierarchy collapses , 1987, STOC 1987.
[20] Jim Kadin,et al. P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..
[21] Jürgen Kämper,et al. Non-Uniform Proof System: A New Framework to Describe Non-Uniform and Probabalistic Complexity Classes , 1988, FSTTCS.
[22] Marek Piotrów,et al. On Complexity of Counting , 1988, MFCS.
[23] James Andrew Kadin. Restricted Turing reducibilities and the structure of the polynomial time hierarchy , 1988 .
[24] Desh Ranjan,et al. Structural complexity theory: recent surprises (invited) , 1990 .
[25] Klaus W. Wagner,et al. Bounded Query Classes , 1990, SIAM J. Comput..
[26] R. Beigel,et al. Bounded Queries to SAT and the Boolean Hierarchy , 1991, Theor. Comput. Sci..
[27] José L. Balcázar,et al. Strong and Robustly Strong Polynomial-Time Reducibilities to Sparse Sets , 1991, Theor. Comput. Sci..
[28] Samuel R. Buss,et al. On Truth-Table Reducibility to SAT , 1991, Inf. Comput..
[29] Osamu Watanabe,et al. How hard are sparse sets? , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.
[30] Ricard Gavaldà,et al. Kolmogorov randomness and its applications to structural complexity theory , 1992 .
[31] Ricard Gavaldà. Bounding the complexity of advice functions , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.
[32] Eric Allender,et al. Lower bounds for the low hierarchy , 1992, JACM.
[33] Osamu Watanabe,et al. On the Computational Complexity of Small Descriptions , 1993, SIAM J. Comput..
[34] Edith Hemaspaandra,et al. SPARSE reduces conjunctively to TALLY , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[35] Timothy J. Long,et al. The Extended Low Hierarchy is an Infinite Hierarchy , 1994, SIAM J. Comput..
[36] Thomas Thierauf,et al. Complexity-Restricted Advice Functions , 1994, SIAM J. Comput..
[37] Osamu Watanabe,et al. Instance complexity , 1994, JACM.
[38] Uwe Schning. GRAPH ISOMORPHISM IS IN THE LOW HIERARCHY , 2022 .