Lagrangian Relaxation

Lagrangian relaxation is a tool to find upper bounds on a given (arbitrary) maximization problem. Sometimes, the bound is exact and an optimal solution is found. Our aim in this paper is to review this technique, the theory behind it, its numerical aspects, its relation with other techniques such as column generation.

[1]  C. Lemaréchal,et al.  THE U -LAGRANGIAN OF A CONVEX FUNCTION , 1996 .

[2]  Torbjörn Larsson,et al.  The Efficiency of Ballstep Subgradient Level Methods for Convex Optimization , 1999, Math. Oper. Res..

[3]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, CDC 1981.

[4]  K. Kiwiel Efficiency of Proximal Bundle Methods , 2000 .

[5]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[6]  Defeng Sun,et al.  Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization , 1998, SIAM J. Optim..

[7]  Robert Mifflin,et al.  A quasi-second-order proximal bundle algorithm , 1996, Math. Program..

[8]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[9]  J. Percus,et al.  Reduction of the N‐Particle Variational Problem , 1964 .

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Michael Patriksson,et al.  Ergodic, primal convergence in dual subgradient schemes for convex programming , 1999, Mathematical programming.

[12]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[13]  Antonio Frangioni,et al.  Solving semidefinite quadratic problems within nonsmooth optimization algorithms , 1996, Comput. Oper. Res..

[14]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[15]  K. Kiwiel A Dual Method for Certain Positive Semidefinite Quadratic Programming Problems , 1989 .

[16]  Boris N. Pshenichnyj The Linearization Method for Constrained Optimization , 1994 .

[17]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  V. N. Solov'ev,et al.  The subdifferential and the directional derivatives of the maximum of a family of convex functions , 1998 .

[20]  K. Kiwiel A Method for Solving Certain Quadratic Programming Problems Arising in Nonsmooth Optimization , 1986 .

[21]  Jan Vlcek,et al.  A bundle-Newton method for nonsmooth unconstrained minimization , 1998, Math. Program..

[22]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[23]  Yurii Nesterov,et al.  Complexity estimates of some cutting plane methods based on the analytic barrier , 1995, Math. Program..

[24]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[25]  A. A. Goldstein,et al.  Newton's method for convex programming and Tchebycheff approximation , 1959, Numerische Mathematik.

[26]  J. Zowe,et al.  Some remarks on the construction of higher order algorithms in convex optimization , 1983 .

[27]  C. Lemaréchal,et al.  Bundle methods applied to the unit-commitment problem , 1996 .

[28]  Robert Mifflin,et al.  On VU-theory for Functions with Primal-Dual Gradient Structure , 2000, SIAM J. Optim..

[29]  R. E. Marsten,et al.  The Boxstep Method for Large-Scale Optimization , 2011, Oper. Res..

[30]  R. Fletcher Practical Methods of Optimization , 1988 .

[31]  G. Nemhauser,et al.  Integer Programming , 2020 .

[32]  P. Wolfe Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974 .

[33]  Claude Lemaréchal,et al.  Dual Methods in Entropy Maximization. Application to Some Problems in Crystallography , 1992, SIAM J. Optim..

[34]  M. Wagner,et al.  Generalized Linear Programming Solves the Dual , 1976 .

[35]  François Oustry,et al.  A second-order bundle method to minimize the maximum eigenvalue function , 2000, Math. Program..

[36]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[37]  J. Goffin,et al.  Decomposition and nondifferentiable optimization with the projective algorithm , 1992 .

[38]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[39]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[40]  H. Uzawa,et al.  Preference, production, and capital: Iterative methods for concave programming , 1989 .

[41]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[42]  Franz Rendl,et al.  A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..

[43]  Stefan Feltenmark,et al.  Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..

[44]  N. Z. Shor,et al.  A minimization method using the operation of extension of the space in the direction of the difference of two successive gradients , 1971 .

[45]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[46]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[47]  C. Lemaréchal,et al.  Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization , 1999 .

[48]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[49]  Michael J. Best,et al.  Equivalence of some quadratic programming algorithms , 1984, Math. Program..

[50]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[51]  Yu. M. Ermol’ev Methods of solution of nonlinear extremal problems , 1966 .

[52]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[53]  J. E. Falk Lagrange Multipliers and Nonconvex Programs , 1969 .

[54]  P. Camerini,et al.  On improving relaxation methods by modified gradient techniques , 1975 .

[55]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization , 1996, SIAM J. Optim..

[56]  C. Lemaréchal,et al.  The eclipsing concept to approximate a multi-valued mapping , 1991 .

[57]  T. Terlaky On lp programming , 1985 .

[58]  Claude Lemaréchal,et al.  Convergence of some algorithms for convex minimization , 1993, Math. Program..

[59]  Donald M. Topkis Letter to the Editor - A Note on Cutting-Plane Methods Without Nested Constraint Sets , 1970, Oper. Res..

[60]  N. Z. Shor,et al.  Method of obtaining estimates in quadratic extremal problems with Boolean variables , 1985 .

[61]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[62]  Claude Lemaréchal,et al.  A geometric study of duality gaps, with applications , 2001, Math. Program..

[63]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[64]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[65]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[66]  N. Z. Shor Utilization of the operation of space dilatation in the minimization of convex functions , 1972 .

[67]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[68]  C. Lemaréchal,et al.  Nonsmooth Algorithms to Solve Semidefinite Programs , 1999 .