Isometry‐Aware Preconditioning for Mesh Parameterization

This paper presents a new preconditioning technique for large‐scale geometric optimization problems, inspired by applications in mesh parameterization. Our positive (semi‐)definite preconditioner acts on the gradients of optimization problems whose variables are positions of the vertices of a triangle mesh in ℝ2 or of a tetrahedral mesh in ℝ3, converting localized distortion gradients into the velocity of a globally near‐rigid motion via a linear solve. We pose our preconditioning tool in terms of the Killing energy of a deformation field and provide new efficient formulas for constructing Killing operators on triangle and tetrahedral meshes. We demonstrate that our method is competitive with state‐of‐the‐art algorithms for locally injective parameterization using a variety of optimization objectives and show applications to two‐ and three‐dimensional mesh deformation.

[1]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[2]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[3]  Leonidas J. Guibas,et al.  On Discrete Killing Vector Fields and Patterns on Surfaces , 2010, Comput. Graph. Forum.

[4]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[5]  J. Neuberger Steepest descent and differential equations , 1985 .

[6]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[7]  S. Yau,et al.  3 D Harmonic Mapping and Tetrahedral Meshing of Brain Imaging Data , 2004 .

[8]  Leonidas J. Guibas,et al.  Discovery of Intrinsic Primitives on Triangle Meshes , 2011, Comput. Graph. Forum.

[9]  Justin W. L. Wan,et al.  Reconstruction of missing cells by a Killing energy minimizing nonrigid image registration , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[10]  Martin Rumpf,et al.  Time‐Discrete Geodesics in the Space of Shells , 2012, Comput. Graph. Forum.

[11]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[12]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[13]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[14]  Yiying Tong,et al.  Discrete 2‐Tensor Fields on Triangulations , 2014, Comput. Graph. Forum.

[15]  Martin Rumpf,et al.  Discrete Geodesic Calculus in Shape Space and Applications in the Space of Viscous Fluidic Objects , 2013, SIAM J. Imaging Sci..

[16]  Zohar Levi,et al.  Bounded distortion parametrization in the space of metrics , 2016, ACM Trans. Graph..

[17]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[18]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[19]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[20]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[21]  W. T. Tutte How to Draw a Graph , 1963 .

[22]  Yang Liu,et al.  Computing inversion-free mappings by simplex assembly , 2016, ACM Trans. Graph..

[23]  Mihai Anitescu,et al.  Real-Time Stochastic Optimization of Complex Energy Systems on High-Performance Computers , 2014, Computing in Science & Engineering.

[24]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[25]  Martin Rumpf,et al.  Splines in the Space of Shells , 2016, Comput. Graph. Forum.

[26]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[27]  Roi Poranne,et al.  Lifted bijections for low distortion surface mappings , 2014, ACM Trans. Graph..

[28]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[29]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[30]  Maks Ovsjanikov,et al.  Discrete Derivatives of Vector Fields on Surfaces -- An Operator Approach , 2015, ACM Trans. Graph..

[31]  Mathieu Desbrun,et al.  Vector field processing on triangle meshes , 2015, SIGGRAPH Asia Courses.

[32]  Leonidas J. Guibas,et al.  As‐Killing‐As‐Possible Vector Fields for Planar Deformation , 2011, Comput. Graph. Forum.

[33]  Robert J. Renka,et al.  Minimal Surfaces and Sobolev Gradients , 1995, SIAM J. Sci. Comput..

[34]  Cosmin G. Petra,et al.  An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization , 2014, SIAM J. Sci. Comput..

[35]  Tobias Martin,et al.  Efficient Non‐linear Optimization via Multi‐scale Gradient Filtering , 2013, Comput. Graph. Forum.

[36]  Justin Solomon,et al.  Near‐Isometric Level Set Tracking , 2016, Comput. Graph. Forum.

[37]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[38]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[39]  Martin Bauer,et al.  A New Riemannian Setting for Surface Registration , 2011, 1106.0620.

[40]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[41]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[42]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[43]  R. Whitaker,et al.  Riemannian Metrics on the Space of Solid Shapes , 2006 .

[44]  Maks Ovsjanikov,et al.  An Operator Approach to Tangent Vector Field Processing , 2013, SGP '13.

[45]  Leonidas J. Guibas,et al.  Shape Decomposition using Modal Analysis , 2009, Comput. Graph. Forum.

[46]  Anuj Srivastava,et al.  A novel riemannian framework for shape analysis of 3D objects , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[47]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[48]  Anuj Srivastava,et al.  Elastic Geodesic Paths in Shape Space of Parameterized Surfaces , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  D. Mumford,et al.  Riemannian Geometries on Spaces of Plane Curves , 2003, math/0312384.

[50]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.