An elegant mind: learning and memory in Caenorhabditis elegans.

This article reviews the literature on learning and memory in the soil-dwelling nematode Caenorhabditis elegans. Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that predict aversive chemicals or the presence or absence of food. In each case, the neural circuit underlying the behavior has been at least partially described, and forward and reverse genetics are being used to elucidate the underlying cellular and molecular mechanisms. Several genes have been identified with no known role other than mediating behavior plasticity.

[1]  Koutarou D. Kimura,et al.  Genetic Control of Temperature Preference in the Nematode Caenorhabditis elegans , 2005, Genetics.

[2]  Catharine H. Rankin,et al.  Mutations of the Caenorhabditis elegansBrain-Specific Inorganic Phosphate Transporter eat-4Affect Habituation of the Tap–Withdrawal Response without Affecting the Response Itself , 2000, The Journal of Neuroscience.

[3]  W. Harris,et al.  Conditioned behavior in Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Bettinger,et al.  State‐dependency in C. elegans , 2004, Genes, brain, and behavior.

[5]  Cori Bargmann,et al.  The Cyclic GMP-Dependent Protein Kinase EGL-4 Regulates Olfactory Adaptation in C. elegans , 2002, Neuron.

[6]  Hatim A. Zariwala,et al.  Step Response Analysis of Thermotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[7]  C. Rongo,et al.  MAGI-1 Modulates AMPA Receptor Synaptic Localization and Behavioral Plasticity in Response to Prior Experience , 2009, PloS one.

[8]  D. van der Kooy,et al.  Serotonin Mediates a Learned Increase in Attraction to High References , 2022 .

[9]  D. D. de Quervain,et al.  A Conserved Function of C. elegans CASY-1 Calsyntenin in Associative Learning , 2009, PloS one.

[10]  L. Bianchi,et al.  A Potassium Channel-MiRP Complex Controls Neurosensory Function in Caenorhabditis elegans * , 2003, The Journal of Biological Chemistry.

[11]  Stuart K. Kim,et al.  LIN-10 Is a Shared Component of the Polarized Protein Localization Pathways in Neurons and Epithelia , 1998, Cell.

[12]  A. V. Maricq,et al.  Memory in Caenorhabditis elegans Is Mediated by NMDA-Type Ionotropic Glutamate Receptors , 2008, Current Biology.

[13]  C. Rankin,et al.  Heat shock disrupts long-term memory consolidation in Caenorhabditis elegans. , 1995, Learning & memory.

[14]  Contribution of neurons to habituation to mechanical stimulation in Caenorhabditis elegans. , 2001, Journal of neurobiology.

[15]  Bret J. Pearson,et al.  The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans , 2001, Nature.

[16]  S. McIntire,et al.  Ethanol preference in C. elegans , 2009, Genes, brain, and behavior.

[17]  Cori Bargmann,et al.  Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. , 1997, Learning & memory.

[18]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  O. Hobert,et al.  An Interneuronal Chemoreceptor Required for Olfactory Imprinting in C. elegans , 2005, Science.

[20]  Damon A. Clark,et al.  The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[21]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[22]  I. Mori,et al.  Negative Regulation and Gain Control of Sensory Neurons by the C. elegans Calcineurin TAX-6 , 2002, Neuron.

[23]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  Jason J. Corneveaux,et al.  Common Kibra Alleles Are Associated with Human Memory Performance , 2006, Science.

[25]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[26]  S. Rademakers,et al.  Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. , 2008, Learning & memory.

[27]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  Cornelia I Bargmann,et al.  Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans , 1995, Neuron.

[29]  Subhajyoti De,et al.  Dopamine Mediates Context-Dependent Modulation of Sensory Plasticity in C. elegans , 2007, Neuron.

[30]  K. Gengyo-Ando,et al.  HEN-1, a Secretory Protein with an LDL Receptor Motif, Regulates Sensory Integration and Learning in Caenorhabditis elegans , 2002, Cell.

[31]  A. V. Maricq,et al.  The C. elegans Glutamate Receptor Subunit NMR-1 Is Required for Slow NMDA-Activated Currents that Regulate Reversal Frequency during Locomotion , 2001, Neuron.

[32]  Nektarios Tavernarakis,et al.  A Synaptic Deg/enac Ion Channel Mediates Learning in C. Elegans by Facilitating Dopamine Signalling , 2022 .

[33]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[34]  C. Rankin,et al.  Long-term habituation is produced by distributed training at long ISIs and not by massed training or short ISIs inCaenorhabditis elegans , 1997 .

[35]  C. Rankin Context conditioning in habituation in the nematode Caenorhabditis elegans. , 2000, Behavioral neuroscience.

[36]  Aravinthan D. T. Samuel,et al.  Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans , 2007, Journal of Experimental Biology.

[37]  C. Lüscher,et al.  Restless AMPA receptors: implications for synaptic transmission and plasticity , 2001, Trends in Neurosciences.

[38]  Zeynep F. Altun,et al.  Neuronal and Intestinal Protein Kinase D Isoforms Mediate Na+ (Salt Taste)–Induced Learning , 2009, Science Signaling.

[39]  C. Rankin,et al.  Early patterned stimulation leads to changes in adult behavior and gene expression in C. elegans , 2007, Genes, brain, and behavior.

[40]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[41]  Y. Ohshima,et al.  Distribution and movement of Caenorhabditis elegans on a thermal gradient , 2003, Journal of Experimental Biology.

[42]  E. Skoulakis,et al.  Memory , 2006, Cellular and Molecular Life Sciences CMLS.

[43]  E. Kandel,et al.  Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans. , 1965, The Journal of physiology.

[44]  Dai Fukumura,et al.  In vivo imaging of tumors. , 2010, Cold Spring Harbor protocols.

[45]  R. Kerr,et al.  In Vivo Imaging of C. elegans Mechanosensory Neurons Demonstrates a Specific Role for the MEC-4 Channel in the Process of Gentle Touch Sensation , 2003, Neuron.

[46]  Y. Jan,et al.  dunce, a mutant of Drosophila deficient in learning. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[48]  Aravinthan D. T. Samuel,et al.  Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli , 2002, The Journal of Neuroscience.

[49]  Edouard De Castro,et al.  Ca2+ Signaling via the Neuronal Calcium Sensor-1 Regulates Associative Learning and Memory in C. elegans , 2001, Neuron.

[50]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Harald Hutter,et al.  CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[52]  Leon Avery,et al.  Dietary choice behavior in Caenorhabditis elegans , 2006, Journal of Experimental Biology.

[53]  Yuichi Iino,et al.  Goα regulates olfactory adaptation by antagonizing Gqα-DAG signaling in Caenorhabditis elegans , 2006 .

[54]  S. Lockery,et al.  Step-Response Analysis of Chemotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[55]  J. Benovic,et al.  Caenorhabditus elegans Arrestin Regulates Neural G Protein Signaling and Olfactory Adaptation and Recovery* , 2005, Journal of Biological Chemistry.

[56]  I. Mori,et al.  Quantitative analysis of thermotaxis in the nematode Caenorhabditis elegans , 2006, Journal of Neuroscience Methods.

[57]  Takaaki Hirotsu,et al.  Neural circuit‐dependent odor adaptation in C. elegans is regulated by the Ras‐MAPK pathway , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[58]  Damon A. Clark,et al.  A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans , 2006, Nature Neuroscience.

[59]  W. Schafer,et al.  The Insulin/PI 3-Kinase Pathway Regulates Salt Chemotaxis Learning in Caenorhabditis elegans , 2006, Neuron.

[60]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[61]  T. Ishihara,et al.  TBX2/TBX3 transcriptional factor homologue controls olfactory adaptation in Caenorhabditis elegans. , 2004, Journal of neurobiology.

[62]  G. Ruvkun,et al.  Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant , 2000, Nature.

[63]  M. Chalfie,et al.  The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals , 2005, Nature Neuroscience.

[64]  John A. Wemmie,et al.  The Acid-Activated Ion Channel ASIC Contributes to Synaptic Plasticity, Learning, and Memory , 2002, Neuron.

[65]  E. Kandel,et al.  Common molecular mechanisms in explicit and implicit memory , 2006, Journal of neurochemistry.

[66]  S R Wicks,et al.  Effects of tap withdrawal response habituation on other withdrawal behaviors: the localization of habituation in the nematode Caenorhabditis elegans. , 1997, Behavioral neuroscience.

[67]  R. Hosono,et al.  A Mutant Exhibiting Abnormal Habituation Behavior in Caenorhabditis elegans , 2002, Journal of neurogenetics.

[68]  E. Kodama,et al.  Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans , 2010, Genes, brain, and behavior.

[69]  C. H. Rankin,et al.  Caenorhabditis elegans: A new model system for the study of learning and memory , 1990, Behavioural Brain Research.

[70]  Suzanne Rademakers,et al.  Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans , 2006, The EMBO journal.

[71]  C. Rankin,et al.  Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. , 1992, Behavioral neuroscience.

[72]  S. R. Wicks,et al.  Effects of tap withdrawal response habituation on other withdrawal behaviors: the localization of habituation in the nematode Caenorhabditis elegans. , 1997, Behavioral neuroscience.

[73]  E. Ricbaude Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors , 1997 .

[74]  D. Kooy,et al.  Contextual Taste Cues Modulate Olfactory Learning in C. elegans by an Occasion-Setting Mechanism , 2004, Current Biology.

[75]  Cornelia I. Bargmann,et al.  Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue , 2004, Nature.

[76]  D. van der Kooy,et al.  Olfactory associative learning in Caenorhabditis elegans is impaired in lrn-1 and lrn-2 mutants. , 1999, Behavioral Neuroscience.

[77]  Catharine H. Rankin,et al.  Blocking Memory Reconsolidation Reverses Memory-Associated Changes in Glutamate Receptor Expression , 2006, The Journal of Neuroscience.

[78]  Mario de Bono,et al.  Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen , 2005, Current Biology.

[79]  Cornelia I. Bargmann,et al.  Olfaction and Odor Discrimination Are Mediated by the C. elegans Guanylyl Cyclase ODR-1 , 2000, Neuron.

[80]  D. van der Kooy,et al.  Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans , 2004, The EMBO journal.

[81]  L. Avery,et al.  Food transport in the C. elegans pharynx , 2003, Journal of Experimental Biology.

[82]  D. van der Kooy,et al.  A mutation in the AMPA-type glutamate receptor, glr-1, blocks olfactory associative and nonassociative learning in Caenorhabditis elegans. , 2001, Behavioral neuroscience.

[83]  C. Rankin,et al.  A new group-training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in Caenorhabditis elegans. , 2002, Learning & memory.

[84]  C. Rankin,et al.  GLR-1, a Non-NMDA Glutamate Receptor Homolog, Is Critical for Long-Term Memory in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[85]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[86]  F. Sesti,et al.  Auto‐phosphorylation of a voltage‐gated K+ channel controls non‐associative learning , 2009, The EMBO journal.

[87]  C. Rubin,et al.  Properties, Regulation, and in Vivo Functions of a Novel Protein Kinase D , 2007, Journal of Biological Chemistry.

[88]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[89]  J. Kaplan,et al.  Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans , 2002, Neuron.

[90]  M. D. Bono,et al.  Soluble Guanylate Cyclases Act in Neurons Exposed to the Body Fluid to Promote C. elegans Aggregation Behavior , 2004, Current Biology.

[91]  A. Goga,et al.  A 3′UTR Pumilio-Binding Element Directs Translational Activation in Olfactory Sensory Neurons , 2009, Neuron.

[92]  Koutarou D. Kimura,et al.  Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. , 2006, Genes & development.

[93]  T. Vellai,et al.  Effects of Sex and Insulin/Insulin-Like Growth Factor-1 Signaling on Performance in an Associative Learning Paradigm in Caenorhabditis elegans , 2006, Genetics.

[94]  Koutarou D. Kimura,et al.  The C. elegans Thermosensory Neuron AFD Responds to Warming , 2004, Current Biology.

[95]  D. van der Kooy,et al.  Serotonin mediates food-odor associative learning in the nematode Caenorhabditis elegans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[97]  Alex Hajnal,et al.  Neuron-Specific Regulation of Associative Learning and Memory by MAGI-1 in C. elegans , 2009, PloS one.

[98]  R. Plasterk,et al.  The G‐protein γ subunit gpc‐1 of the nematode C.elegans is involved in taste adaptation , 2002 .

[99]  Tod R. Thiele,et al.  A Central Role of the BK Potassium Channel in Behavioral Responses to Ethanol in C. elegans , 2003, Cell.

[100]  I. Mori,et al.  Molecular Physiology of the Neural Circuit for Calcineurin-Dependent Associative Learning in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[101]  J. Kaplan,et al.  Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. , 1999, Neuron.

[102]  D. van der Kooy,et al.  A behavioral and genetic dissection of two forms of olfactory plasticity in Caenorhabditis elegans: adaptation and habituation. , 2000, Learning & memory.

[103]  Aravinthan D. T. Samuel,et al.  An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior , 2008, Proceedings of the National Academy of Sciences.

[104]  John A Wemmie,et al.  Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Yamamoto,et al.  Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. , 2001, The Journal of experimental biology.

[106]  H. Lipkin Where is the ?c? , 1978 .

[107]  Takeshi Ishihara,et al.  Caenorhabditis elegans Integrates the Signals of Butanone and Food to Enhance Chemotaxis to Butanone , 2007, The Journal of Neuroscience.

[108]  S. R. Wicks,et al.  The integration of antagonistic reflexes revealed by laser ablation of identified neurons determines habituation kinetics of the Caenorhabditis elegans tap withdrawal response , 1996, Journal of Comparative Physiology A.

[109]  D. van der Kooy,et al.  Regulation of distinct attractive and aversive mechanisms mediating benzaldehyde chemotaxis in Caenorhabditis elegans. , 2001, Learning & memory.

[110]  D. van der Kooy,et al.  Mutations that prevent associative learning in C. elegans. , 1997, Behavioral neuroscience.

[111]  Koutarou D. Kimura,et al.  Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans , 2008, Science.

[112]  H. Horvitz,et al.  EAT-4, a Homolog of a Mammalian Sodium-Dependent Inorganic Phosphate Cotransporter, Is Necessary for Glutamatergic Neurotransmission in Caenorhabditis elegans , 1999, The Journal of Neuroscience.