Carbon as a key driver of super-reduced explosive volcanism on Mercury: Evidence from graphite-melt smelting experiments

[1]  O. Barraud,et al.  Spectral investigation of Mercury's pits' surroundings: Constraints on the planet's explosive activity , 2021 .

[2]  R. Suzuki,et al.  Synthesis of Silicon Sulfide by Using CS2 Gas , 2021, Metallurgical and Materials Transactions B.

[3]  J. Emery,et al.  The lifecycle of hollows on Mercury: An evaluation of candidate volatile phases and a novel model of formation , 2021, 2101.10886.

[4]  R. Milliken,et al.  Effect of sulfur speciation on chemical and physical properties of very reduced mercurian melts , 2020 .

[5]  F. McCubbin,et al.  Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids , 2019, Earth and Planetary Science Letters.

[6]  L. Nittler,et al.  A Low O/Si Ratio on the Surface of Mercury: Evidence for Silicon Smelting? , 2017 .

[7]  R. Dasgupta,et al.  Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Moon , 2017 .

[8]  L. Taylor,et al.  Atmospheric outgassing and native-iron formation during carbonaceous sediment–basalt melt interactions , 2017 .

[9]  D. Rothery,et al.  Mercury’s low-reflectance material: Constraints from hollows , 2018 .

[10]  Carolyn M. Ernst,et al.  Remote sensing evidence for an ancient carbon-bearing crust on Mercury , 2016 .

[11]  C. McCammon,et al.  Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury , 2016 .

[12]  L. Nittler,et al.  Evidence from MESSENGER for sulfur‐ and carbon‐driven explosive volcanism on Mercury , 2016 .

[13]  F. McCubbin,et al.  The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas , 2016 .

[14]  S. Murchie,et al.  Global Distribution and Spectral Properties of Low‐Reflectance Material on Mercury , 2015 .

[15]  K. Iacovino Linking subsurface to surface degassing at active volcanoes: A thermodynamic model with applications to Erebus volcano , 2015 .

[16]  L. Nittler,et al.  Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material , 2015 .

[17]  L. Nittler,et al.  Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements , 2015 .

[18]  L. Nittler,et al.  Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer , 2015 .

[19]  F. McCubbin,et al.  Exotic crust formation on Mercury: Consequences of a shallow, FeO‐poor mantle , 2015 .

[20]  F. McCubbin,et al.  Density and compressibility of the molten lunar picritic glasses: Implications for the roles of Ti and Fe in the structures of silicate melts , 2015 .

[21]  T. Bowers Pressure‐Volume‐Temperature Properties of H2O‐CO2 Fluids , 2013 .

[22]  L. Nittler,et al.  The redox state, FeO content, and origin of sulfur‐rich magmas on Mercury , 2013 .

[23]  L. Nittler,et al.  MESSENGER detection of electron-induced X-ray fluorescence from Mercury's surface , 2012 .

[24]  Richard D. Starr,et al.  Major-Element Abundances on the Surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer , 2012 .

[25]  A. Polozov,et al.  Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments , 2012 .

[26]  M. Hirschmann,et al.  Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets , 2012 .

[27]  Sean C. Solomon,et al.  Chemical heterogeneity on Mercury's surface revealed by the MESSENGER X-Ray Spectrometer , 2012 .

[28]  F. McCubbin,et al.  Is Mercury a volatile‐rich planet? , 2012 .

[29]  Richard D. Starr,et al.  The Major-Element Composition of Mercury’s Surface from MESSENGER X-ray Spectrometry , 2011, Science.

[30]  M. Zolotov On the chemistry of mantle and magmatic volatiles on Mercury , 2011 .

[31]  M. Ghiorso,et al.  Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems , 2010 .

[32]  V. V. Ryabov,et al.  Native iron (–platinum) ores from the Siberian Platform trap intrusions , 2010 .

[33]  P. Papale,et al.  Origin of basalt fire-fountain eruptions on Earth versus the Moon , 2009 .

[34]  S. Murchie,et al.  Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances , 2008 .

[35]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[36]  L. Wilson,et al.  Fractional melting and smelting on the ureilite parent body , 2007 .

[37]  T. Grove,et al.  Early petrologic processes on the ureilite parent body , 2003 .

[38]  Zhongting Ma Thermodynamic description for concentrated metallic solutions using interaction parameters , 2001 .

[39]  Gary E. Lofgren,et al.  Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration , 1999 .

[40]  S. Chakraborty,et al.  The activities of NiO, CoO and FeO in silicate melts , 1997 .

[41]  K. Keil,et al.  High-temperature mass spectrometric degassing of enstatite chondrites: implications for pyroclastic volcanism on the aubrite parent body. , 1991 .

[42]  O. Medenbach,et al.  Ulvöspinel in native iron-bearing assemblages and the origin of these assemblages in basalts from Ovifak, Greenland, and Bühl, Federal Republic of Germany , 1982 .

[43]  L. Wilson Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion , 1980 .

[44]  J. Head,et al.  Lunar regional pyroclastic deposits:evidence for eruption from dikes emplaced into the near-surface crust , 2014 .

[45]  F. Ulff-Møller Formation of native iron in sediment-contaminated magma: I. A. case study of the Hanekammen Complex on Disko Island, West Greenland , 1990 .

[46]  M. Sato Oxygen fugacity and other thermochemical parameters of Apollo 17 high-Ti basalts and their implications on the reduction mechanism , 1976 .