Unification of quantum resources in distributed scenarios

Quantum resources, such as coherence, discord, and entanglement, play as a key role for demonstrating advantage in many computation and communication tasks. In order to find the nature behind these resources, tremendous efforts have been made to explore the connections between them. In this work, we extend the single party coherence resource framework to the distributed scenario and relate it to basis-dependent discord. We show the operational meaning of basis-dependent discord in quantum key distribution. By formulating a framework of basis-dependent discord, we connect these quantum resources, coherence, discord, and entanglement, quantitatively, which leads to a unification of measures of different quantum resources.

[1]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.

[2]  Ming‐Liang Hu,et al.  Relative quantum coherence, incompatibility, and quantum correlations of states , 2016, 1610.05413.

[3]  Xiongfeng Ma,et al.  Unification of nonclassicality measures in interferometry , 2018 .

[4]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[5]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[6]  Kok Chuan Tan,et al.  Unified view of quantum correlations and quantum coherence , 2016, 1603.01958.

[7]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[9]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[10]  M. Horodecki,et al.  Quantum information can be negative , 2005, quant-ph/0505062.

[11]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[12]  Masahito Hayashi,et al.  Secure uniform random number extraction via incoherent strategies , 2017, ArXiv.

[13]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[14]  Xing Xiao,et al.  Quantum coherence in multipartite systems , 2015, 1506.01773.

[15]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[16]  M. N. Bera,et al.  Entanglement and Coherence in Quantum State Merging. , 2016, Physical review letters.

[17]  Davide Girolami,et al.  Characterizing nonclassical correlations via local quantum uncertainty. , 2012, Physical review letters.

[18]  Animesh Datta,et al.  QUANTUM DISCORD AS A RESOURCE IN QUANTUM COMMUNICATION , 2012, 1204.6042.

[19]  Kok Chuan Tan,et al.  Entanglement as the Symmetric Portion of Correlated Coherence. , 2018, Physical review letters.

[20]  G. Adesso,et al.  Assisted Distillation of Quantum Coherence. , 2015, Physical review letters.

[21]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[22]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[23]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[24]  Javier Prior,et al.  Coherence-assisted single-shot cooling by quantum absorption refrigerators , 2015, 1504.01593.

[25]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Thomas Theurer,et al.  Of Local Operations and Physical Wires , 2018, Physical Review X.

[27]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[28]  M. Plenio,et al.  Resource Theory of Superposition. , 2017, Physical review letters.

[29]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[30]  T. Ralph,et al.  Observing the operational significance of discord consumption , 2012, Nature Physics.

[31]  Maciej Lewenstein,et al.  Towards Resource Theory of Coherence in Distributed Scenarios , 2015, 1509.07456.

[32]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[33]  M. Horodecki,et al.  Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics. , 2015, Physical review letters.

[34]  Michele Allegra,et al.  Coherence in quantum estimation , 2016 .

[35]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[36]  M. B. Plenio,et al.  Coherent control of quantum systems as a resource theory , 2015, 1512.07486.

[37]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[38]  Yannick Ole Lipp,et al.  Quantum discord as resource for remote state preparation , 2012, Nature Physics.

[39]  Seungbeom Chin,et al.  Generalized coherence concurrence and path distinguishability , 2017, 1702.06061.

[40]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[41]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[42]  Xiongfeng Ma,et al.  Intrinsic randomness as a measure of quantum coherence , 2015, 1505.04032.

[43]  Mark Hillery,et al.  Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation , 2015, 1512.01874.

[44]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[45]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[46]  Huangjun Zhu,et al.  Operational one-to-one mapping between coherence and entanglement measures , 2017, 1704.01935.

[47]  Ting Gao,et al.  Measuring coherence with entanglement concurrence , 2016, 1610.07052.

[48]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[49]  Xiaofei Qi,et al.  Coherence measures and optimal conversion for coherent states , 2015, Quantum Inf. Comput..

[50]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[51]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[52]  Davide Girolami,et al.  Converting Coherence to Quantum Correlations. , 2015, Physical review letters.

[53]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[54]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[55]  A. Acín,et al.  No-Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems. , 2016, Physical review letters.

[56]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[57]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[58]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[59]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[60]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[61]  W. Marsden I and J , 2012 .

[62]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[63]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[64]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[65]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.