Generalized two-port elements

Abstract The development of models constitutes a fundamental step in the study of natural and artificial systems. Present day science aims to address broader and more complex areas of application requiring, therefore, new concepts and models. This paper explores the concept of generalized two-port network by embedding the ideas of fractional calculus, memristor, transformer and gyrator. Each element represents separately one possible direction for generalizing the classical elements, but the cross-fertilization of the distinct topics has been overlooked. In this line of thought, the proposal of a novel element is a logical conjecture for obeying the symmetries that have been discovered in nature.

[1]  R. Williams,et al.  How We Found The Missing Memristor , 2008, IEEE Spectrum.

[2]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[3]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[4]  Karabi Biswas,et al.  Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Yi-Fei Pu,et al.  Fracmemristor: Fractional-Order Memristor , 2016, IEEE Access.

[6]  I. Schäfer,et al.  Modelling of lossy coils using fractional derivatives , 2008 .

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  J. A. Tenreiro Machado,et al.  Matrix fractional systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[9]  P. E. Wellstead,et al.  Introduction to physical system modelling , 1979 .

[10]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[11]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[12]  S. Jeszenszky,et al.  History of Transformers , 1996, IEEE Power Engineering Review.

[13]  Ahmed Gomaa Radwan,et al.  Fractional-order Memristor Response Under DC and Periodic Signals , 2015, Circuits Syst. Signal Process..

[14]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[15]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[16]  S. Westerlund,et al.  Capacitor theory , 1994 .

[17]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[18]  John Choma,et al.  Gyrator-Based Synthesis of Active On-Chip Inductances , 2003 .

[19]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[20]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[21]  K. Biswas,et al.  Performance study of fractional order integrator using single-component fractional order element , 2011, IET Circuits Devices Syst..

[22]  J. A. Tenreiro Machado,et al.  Fractional generalization of memristor and higher order elements , 2013, Commun. Nonlinear Sci. Numer. Simul..

[23]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[24]  L. Chua Memristor-The missing circuit element , 1971 .

[25]  J. T. Tenreiro Machado,et al.  Fractional order inductive phenomena based on the skin effect , 2012 .

[26]  Leon O. Chua,et al.  Memfractance: A Mathematical Paradigm for Circuit Elements with Memory , 2014, Int. J. Bifurc. Chaos.

[27]  A. Oustaloup Systèmes asservis linéaires d'ordre fractionnaire : théorie et pratique , 1983 .

[28]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[29]  R. Caponetto,et al.  Experimental Characterization of Ionic Polymer Metal Composite as a Novel Fractional Order Element , 2013 .

[30]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[31]  J. A. Tenreiro Machado,et al.  Fractional order junctions , 2015, Commun. Nonlinear Sci. Numer. Simul..

[32]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[33]  Debasmita Mondal,et al.  Experimental studies on realization of fractional inductors and fractional‐order bandpass filters , 2015, Int. J. Circuit Theory Appl..

[34]  S. Westerlund Dead matter has memory , 1991 .

[35]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[36]  José António Tenreiro Machado Generalized convolution , 2015, Appl. Math. Comput..

[37]  S. C. BRADFORD,et al.  The Liesegang Phenomenon and Concretionary Structure in Rocks , 1916, Nature.

[38]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[39]  M. Ehsani,et al.  Generalized Gyrator Theory , 2010, IEEE Transactions on Power Electronics.

[40]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[41]  Dimitri Jeltsema,et al.  Port-Hamiltonian Formulation of Systems With Memory , 2012, Proceedings of the IEEE.

[42]  Friedrich,et al.  History of the Transformer , 2007 .

[43]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[44]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[45]  Leon O. Chua,et al.  Device modeling via nonlinear circuit elements , 1980 .

[46]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[47]  Juraj Valsa,et al.  Analogue Realization of Fractional-Order Dynamical Systems , 2013, Entropy.

[48]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.