Algebraic distance for anisotropic diffusion problems: multilevel results

In this paper we motivate, discuss the implementation and present the resulting numerics for a new definition of strength of connection which is based on the notion of algebraic distance. This algebraic distance measure, combined with compatible relaxation, is used to choose suitable coarse grids and accurate interpolation operators for algebraic multigrid algorithms. The main tool of the proposed measure is the least squares functional defined using a set of relaxed test vectors. The motivating application is the anisotropic diffusion problem, in particular problems with non-grid aligned anisotropy. We demonstrate numerically that the measure yields a robust technique for determining strength of connectivity among variables, for both two-grid and multigrid solvers. %We illustrate the use of the measure to construct, in addition, an adaptive aggregation form of interpolation for the targeted anisotropic problems. %Our approach is not a two-level approach -- we provide preliminary results that show its extendability to multigrid. The proposed algebraic distance measure can also be used in any other coarsening procedure, assuming a rich enough set of the near-kernel components of the matrix for the targeted system is known or computed.

[1]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[2]  Jacob B. Schroder,et al.  Smoothed aggregation solvers for anisotropic diffusion , 2012, Numer. Linear Algebra Appl..

[3]  Jacob B. Schroder,et al.  A new perspective on strength measures in algebraic multigrid , 2010, Numer. Linear Algebra Appl..

[4]  Thomas A. Manteuffel,et al.  Operator‐based interpolation for bootstrap algebraic multigrid , 2010, Numer. Linear Algebra Appl..

[5]  Robert D. Falgout,et al.  Coarse-Grid Selection for Parallel Algebraic Multigrid , 1998, IRREGULAR.

[6]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[7]  Ludmil T. Zikatanov,et al.  An algebraic multilevel method for anisotropic elliptic equations based on subgraph matching , 2012, Numer. Linear Algebra Appl..

[8]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[9]  A. Brandt General highly accurate algebraic coarsening. , 2000 .

[10]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[11]  P. Vassilevski,et al.  ON GENERALIZING THE AMG FRAMEWORK , 2003 .

[12]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[13]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[14]  L. Zikatanov,et al.  Algebraic Multigrid Methods Based on Compatible Relaxation and Energy Minimization , 2007 .

[15]  D. Bartuschat Algebraic Multigrid , 2007 .

[16]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[17]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[18]  Thomas A. Manteuffel,et al.  An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..

[19]  Ludmil T. Zikatanov,et al.  An Algebraic Multigrid Method Based on Matching in Graphs , 2013, Domain Decomposition Methods in Science and Engineering XX.

[20]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[21]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[22]  A. Brandt Multiscale Scientific Computation: Review 2001 , 2002 .

[23]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[24]  Robert D. Falgout,et al.  Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..

[25]  O. E. Livne,et al.  Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..

[26]  Ilya Safro,et al.  Relaxation-based coarsening and multiscale graph organization , 2010, Multiscale Model. Simul..

[27]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .