A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction.

The soil-dwelling alpha-proteobacterium Sinorhizobium meliloti engages in a symbiosis with legumes: S. meliloti elicits the formation of plant root nodules where it converts dinitrogen to ammonia for use by the plant in exchange for plant photosynthate. To study the coordinate differentiation of S. meliloti and its legume partner during nodule development, we designed a custom Affymetrix GeneChip with the complete S. meliloti genome and approximately 10,000 probe sets for the plant host, Medicago truncatula. Expression profiling of free-living S. meliloti grown with the plant signal molecule luteolin in defined minimal and rich media or of strains altered in the expression of key regulatory proteins (NodD1, NodD3, and RpoN) confirms previous data and identifies previously undescribed regulatory targets. Analyses of root nodules show that this Symbiosis Chip allows the study of gene expression in both partners simultaneously. Our studies detail nearly 5,000 transcriptome changes in symbiosis and document complex transcriptional profiles of S. meliloti in different environments.

[1]  S. Shaw,et al.  Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Djordjevic Sinorhizobium meliloti metabolism in the root nodule: A proteomic perspective , 2004, Proteomics.

[3]  M. Kahn,et al.  New Recombination Methods for Sinorhizobium meliloti Genetics , 2004, Applied and Environmental Microbiology.

[4]  D. Kahn,et al.  Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. , 2004, Molecular plant-microbe interactions : MPMI.

[5]  B. Hauer,et al.  The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli , 1994, Molecular and General Genetics MGG.

[6]  Folker Meyer,et al.  Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. , 2003, Journal of biotechnology.

[7]  W. E. Orr,et al.  Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. , 2003, Molecular vision.

[8]  R. Lempicki,et al.  Evaluation of gene expression measurements from commercial microarray platforms. , 2003, Nucleic acids research.

[9]  G. Weiller,et al.  A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. , 2003, Molecular plant-microbe interactions : MPMI.

[10]  S. Karlin,et al.  Predicting gene expression levels from codon biases in α-proteobacterial genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Kahn,et al.  Development of Sinorhizobium meliloti Pilot Macroarrays for Transcriptome Analysis , 2003, Applied and Environmental Microbiology.

[12]  J. Batut,et al.  Transcriptome analysis of Sinorhizobium meliloti during symbiosis , 2003, Genome Biology.

[13]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. W. Davis,et al.  Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. Goffeau,et al.  Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Kim Wong,et al.  The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Ronald W. Davis,et al.  The Composite Genome of the Legume Symbiont Sinorhizobium meliloti , 2001, Science.

[18]  Frederick R. Blattner,et al.  High-Density Microarray-Mediated Gene Expression Profiling of Escherichia coli , 2001, Journal of bacteriology.

[19]  S. Long Genes and signals in the rhizobium-legume symbiosis. , 2001, Plant physiology.

[20]  I. Oresnik,et al.  Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma‐cured derivatives of Sinorhizobium meliloti strain 2011 , 2000, Electrophoresis.

[21]  J. Stougaard Regulators and regulation of legume root nodule development. , 2000, Plant physiology.

[22]  I. Oresnik,et al.  Megaplasmid pRme2011a of Sinorhizobium meliloti Is Not Required for Viability , 2000, Journal of bacteriology.

[23]  D. Allaway,et al.  Carbon and nitrogen metabolism in Rhizobium. , 2000, Advances in microbial physiology.

[24]  R. Poole,et al.  Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. , 2000, Advances in microbial physiology.

[25]  F. Blattner,et al.  Functional Genomics: Expression Analysis ofEscherichia coli Growing on Minimal and Rich Media , 1999, Journal of bacteriology.

[26]  S. Long,et al.  Bacterial genes induced within the nodule during the Rhizobium–legume symbiosis , 1999, Molecular microbiology.

[27]  Xueming Wei,et al.  Tn5-Induced and Spontaneous Switching ofSinorhizobium meliloti to Faster-Swarming Behavior , 1999, Applied and Environmental Microbiology.

[28]  A. Kondorosi,et al.  Regulation of symbiotic root nodule development. , 1998, Annual review of genetics.

[29]  Estelle Jumas-Bilak,et al.  Proteobacteria Alpha Subgroup of the Unconventional Genomic Organization in The , 1998 .

[30]  Xueming Wei,et al.  Starvation-Induced Changes in Motility, Chemotaxis, and Flagellation of Rhizobium meliloti , 1998, Applied and Environmental Microbiology.

[31]  M. Blot,et al.  Cytochrome c biogenesis is involved in the transposon Tn5‐mediated bleomycin resistance and the associated fitness effect in Escherichia coli , 1998, Molecular microbiology.

[32]  M. Delgado,et al.  Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. , 1998, Advances in microbial physiology.

[33]  S. Long,et al.  Multiple genetic controls on Rhizobium meliloti syrA, a regulator of exopolysaccharide abundance. , 1998, Genetics.

[34]  D. Emerich,et al.  The Formation of Nitrogen-Fixing Bacteroids Is Delayed but Not Abolished in Soybean Infected by an [alpha]-Ketoglutarate Dehydrogenase-Deficient Mutant of Bradyrhizobium japonicum , 1997, Plant physiology.

[35]  P. Künzler,et al.  The Bradyrhizobium japonicum aconitase gene (acnA) is important for free-living growth but not for an effective root nodule symbiosis , 1996, Journal of bacteriology.

[36]  J. Cooper,et al.  Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms , 1994, Journal of bacteriology.

[37]  S. Long,et al.  Regulation of syrM and nodD3 in Rhizobium meliloti. , 1993, Genetics.

[38]  A. Hirsch Developmental biology of legume nodulation. , 1992, The New phytologist.

[39]  D. Ehrhardt,et al.  Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. , 1992, Science.

[40]  E. Signer,et al.  Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. , 1990, Genes & development.

[41]  I. Oresnik,et al.  Mutants of Rhizobium meliloti defective in succinate metabolism , 1988, Journal of bacteriology.

[42]  T. Egelhoff,et al.  Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. , 1988, Genes & development.

[43]  F. Ausubel,et al.  Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. M. Albright,et al.  Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions , 1987, Journal of bacteriology.

[45]  J. Leigh,et al.  Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. , 1985, Proceedings of the National Academy of Sciences of the United States of America.