Two-Loop NF = 1 QED Bhabha Scattering Differential Cross Section

[1]  R. Bonciani,et al.  Planar box diagram for the (NF=1) 2-loop QED virtual corrections to Bhabha scattering , 2003, hep-ph/0310333.

[2]  R. Bonciani,et al.  QED vertex form factors at two loops , 2003, hep-ph/0307295.

[3]  P. Mastrolia,et al.  Two-loop form factors in QED , 2003, hep-ph/0302162.

[4]  R. Bonciani,et al.  Vertex diagrams for the QED form factors at the 2-loop level , 2003, hep-ph/0301170.

[5]  T. Gehrmann,et al.  Analytic continuation of massless two-loop four-point functions , 2002, hep-ph/0207020.

[6]  T. Gehrmann,et al.  Numerical evaluation of two-dimensional harmonic polylogarithms , 2001, hep-ph/0111255.

[7]  T. Gehrmann,et al.  Numerical evaluation of harmonic polylogarithms , 2001, hep-ph/0107173.

[8]  J. Bij,et al.  Second order contributions to elastic large-angle Bhabha scattering , 2001, hep-ph/0106052.

[9]  L. Dixon,et al.  Two-loop correction to Bhabha scattering , 2000, hep-ph/0010075.

[10]  T. Gehrmann,et al.  Two-Loop Master Integrals for $\gamma^* \to 3$ Jets: The planar topologies , 2000, hep-ph/0008287.

[11]  T. Gehrmann,et al.  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[12]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[13]  A. Arbuzov,et al.  Second order contributions to elastic large-angle Bhabha scattering cross-section , 1998, hep-ph/9806215.

[14]  G. Montagna,et al.  Precision physics at LEP , 1998, hep-ph/9802302.

[15]  L. Trentadue,et al.  Hard pair production in large angle Bhabha scattering , 1996 .

[16]  E. Remiddi,et al.  The analytical value of the electron (g − 2) at order α3 in QED , 1996 .

[17]  F. Filthaut,et al.  Event generators for Bhabha scattering , 1996, hep-ph/9602393.

[18]  Gambino,et al.  QCD corrections to Higgs boson self-energies and fermionic decay widths. , 1994, Physical review. D, Particles and fields.

[19]  A. Djouadi,et al.  Erratum: Electroweak gauge boson self-energies: Complete QCD corrections , 1994, Physical review. D, Particles and fields.

[20]  P. Osland,et al.  Decorated-box-diagram contributions to Bhabha scattering. (II) , 1993, hep-ph/9304212.

[21]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[22]  Giuseppe Dattoli,et al.  An algebraic view to the operatorial ordering and its applications to optics , 1988 .

[23]  M. Greco Radiative corrections to e+e− reactions atLEP/SLC Energies , 1988 .

[24]  R. Kleiss,et al.  Radiative corrections to muon pair and quark pair production in electron-positron collisions in the Z0 region , 1982 .

[25]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[26]  F. Tkachov A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .

[27]  M. Consoli One-loop corrections to e+e− → e+e− in the weinberg model☆ , 1979 .

[28]  R. Gastmans,et al.  Dimensional regularization of the infrared problem , 1973 .

[29]  Ettore Remiddi,et al.  Electron form factors up to fourth order. - I , 1972 .

[30]  C. G. Bollini,et al.  Lowest order “divergent” graphs in v-dimensional space , 1972 .

[31]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[32]  P. Nieuwenhuizen Muon-electron scattering cross section to order α3 , 1971 .

[33]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[34]  S. Laporta,et al.  difference equations , 2001 .

[35]  M. Bohm,et al.  Radiative corrections to Bhabha scattering at high energies (I): Virtual and soft photon corrections , 1988 .

[36]  S. Berman,et al.  Nuovo Cimento , 1983 .

[37]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[38]  J. F. Ashmore,et al.  A method of gauge-invariant regularization , 1972 .

[39]  Giovanni M. Cicuta,et al.  Analytic renormalization via continuous space dimension , 1972 .

[40]  R. Barbieri,et al.  Electron form factors up to fourth order. - II , 1972 .