Two-Loop NF = 1 QED Bhabha Scattering Differential Cross Section
暂无分享,去创建一个
[1] R. Bonciani,et al. Planar box diagram for the (NF=1) 2-loop QED virtual corrections to Bhabha scattering , 2003, hep-ph/0310333.
[2] R. Bonciani,et al. QED vertex form factors at two loops , 2003, hep-ph/0307295.
[3] P. Mastrolia,et al. Two-loop form factors in QED , 2003, hep-ph/0302162.
[4] R. Bonciani,et al. Vertex diagrams for the QED form factors at the 2-loop level , 2003, hep-ph/0301170.
[5] T. Gehrmann,et al. Analytic continuation of massless two-loop four-point functions , 2002, hep-ph/0207020.
[6] T. Gehrmann,et al. Numerical evaluation of two-dimensional harmonic polylogarithms , 2001, hep-ph/0111255.
[7] T. Gehrmann,et al. Numerical evaluation of harmonic polylogarithms , 2001, hep-ph/0107173.
[8] J. Bij,et al. Second order contributions to elastic large-angle Bhabha scattering , 2001, hep-ph/0106052.
[9] L. Dixon,et al. Two-loop correction to Bhabha scattering , 2000, hep-ph/0010075.
[10] T. Gehrmann,et al. Two-Loop Master Integrals for $\gamma^* \to 3$ Jets: The planar topologies , 2000, hep-ph/0008287.
[11] T. Gehrmann,et al. Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[12] J. Vermaseren,et al. Harmonic Polylogarithms , 1999, hep-ph/9905237.
[13] A. Arbuzov,et al. Second order contributions to elastic large-angle Bhabha scattering cross-section , 1998, hep-ph/9806215.
[14] G. Montagna,et al. Precision physics at LEP , 1998, hep-ph/9802302.
[15] L. Trentadue,et al. Hard pair production in large angle Bhabha scattering , 1996 .
[16] E. Remiddi,et al. The analytical value of the electron (g − 2) at order α3 in QED , 1996 .
[17] F. Filthaut,et al. Event generators for Bhabha scattering , 1996, hep-ph/9602393.
[18] Gambino,et al. QCD corrections to Higgs boson self-energies and fermionic decay widths. , 1994, Physical review. D, Particles and fields.
[19] A. Djouadi,et al. Erratum: Electroweak gauge boson self-energies: Complete QCD corrections , 1994, Physical review. D, Particles and fields.
[20] P. Osland,et al. Decorated-box-diagram contributions to Bhabha scattering. (II) , 1993, hep-ph/9304212.
[21] A. Kotikov. Differential equations method. New technique for massive Feynman diagram calculation , 1991 .
[22] Giuseppe Dattoli,et al. An algebraic view to the operatorial ordering and its applications to optics , 1988 .
[23] M. Greco. Radiative corrections to e+e− reactions atLEP/SLC Energies , 1988 .
[24] R. Kleiss,et al. Radiative corrections to muon pair and quark pair production in electron-positron collisions in the Z0 region , 1982 .
[25] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[26] F. Tkachov. A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .
[27] M. Consoli. One-loop corrections to e+e− → e+e− in the weinberg model☆ , 1979 .
[28] R. Gastmans,et al. Dimensional regularization of the infrared problem , 1973 .
[29] Ettore Remiddi,et al. Electron form factors up to fourth order. - I , 1972 .
[30] C. G. Bollini,et al. Lowest order “divergent” graphs in v-dimensional space , 1972 .
[31] G. Hooft,et al. Regularization and Renormalization of Gauge Fields , 1972 .
[32] P. Nieuwenhuizen. Muon-electron scattering cross section to order α3 , 1971 .
[33] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[34] S. Laporta,et al. difference equations , 2001 .
[35] M. Bohm,et al. Radiative corrections to Bhabha scattering at high energies (I): Virtual and soft photon corrections , 1988 .
[36] S. Berman,et al. Nuovo Cimento , 1983 .
[37] Gerard 't Hooft,et al. Scalar One Loop Integrals , 1979 .
[38] J. F. Ashmore,et al. A method of gauge-invariant regularization , 1972 .
[39] Giovanni M. Cicuta,et al. Analytic renormalization via continuous space dimension , 1972 .
[40] R. Barbieri,et al. Electron form factors up to fourth order. - II , 1972 .