Enhanced Hybridization Sets the Stage for Electronic Nematicity in CeRhIn_{5}.

High magnetic fields induce a pronounced in-plane electronic anisotropy in the tetragonal antiferromagnetic metal CeRhIn_{5} at H^{*}≳30  T for fields ≃20° off the c axis. Here we investigate the response of the underlying crystal lattice in magnetic fields to 45 T via high-resolution dilatometry. At low fields, a finite magnetic field component in the tetragonal ab plane explicitly breaks the tetragonal (C_{4}) symmetry of the lattice revealing a finite nematic susceptibility. A modest a-axis expansion at H^{*} hence marks the crossover to a fluctuating nematic phase with large nematic susceptibility. Magnetostriction quantum oscillations confirm a Fermi surface change at H^{*} with the emergence of new orbits. By analyzing the field-induced change in the crystal-field ground state, we conclude that the in-plane Ce 4f hybridization is enhanced at H^{*}, in agreement with the in-plane lattice expansion. We argue that the nematic behavior observed in this prototypical heavy-fermion material is of electronic origin, and is driven by the hybridization between 4f and conduction electrons which carries the f-electron anisotropy to the Fermi surface.

[1]  G. Ehlers,et al.  Tunable emergent heterostructures in a prototypical correlated metal , 2017, 1712.01761.

[2]  George Rodriguez,et al.  Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions , 2017, Italian National Conference on Sensors.

[3]  Z. Fisk,et al.  Evolution of ground-state wave function in CeCoIn5 upon Cd or Sn doping , 2017, 1709.06830.

[4]  L. Balicas,et al.  Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5 , 2017, Nature.

[5]  D. Graf,et al.  Magnetic field-induced Fermi surface reconstruction and quantum criticality in , 2017 .

[6]  E. Bauer,et al.  Low temperature magnetic structure of CeRhIn5 by neutron diffraction on absorption-optimized samples , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  L. Balicas,et al.  Field-induced density wave in the heavy-fermion compound CeRhIn5 , 2015, Nature Communications.

[8]  Los Alamos National Laboratory,et al.  Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn₅. , 2014, Physical review letters.

[9]  J. Schmalian,et al.  What drives nematic order in iron-based superconductors? , 2014, Nature Physics.

[10]  L. Tjeng,et al.  Correlation between ground state and orbital anisotropy in heavy fermion materials , 2013, Proceedings of the National Academy of Sciences.

[11]  M. Carcao,et al.  Poster Presentation , 2013 .

[12]  N. Hollmann,et al.  Crystal-field and Kondo-scale investigations of CeMIn5 (M = Co, Ir, and Rh): A combined x-ray absorption and inelastic neutron scattering study , 2010, 1003.0300.

[13]  Michael J. Lawler,et al.  Nematic Fermi Fluids in Condensed Matter Physics , 2009, 0910.4166.

[14]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[15]  V. Sidorov,et al.  Tuning the pressure-induced superconducting phase in doped CeRhIn5. , 2008, Physical review letters.

[16]  G. Kotliar,et al.  Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5 , 2007, Science.

[17]  P. Coleman Heavy Fermions: Electrons at the Edge of Magnetism , 2006, cond-mat/0612006.

[18]  P. Canfield,et al.  Versatile and compact capacitive dilatometer , 2006, cond-mat/0610396.

[19]  M. Vojta,et al.  Fermi-liquid instabilities at magnetic quantum phase transitions , 2006, cond-mat/0606317.

[20]  M. Salamon,et al.  Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 , 2006, Nature.

[21]  A. McCollam,et al.  Anomalous de Haas-van Alphen oscillations in CeCoIn5. , 2005, Physical review letters.

[22]  S. Kawasaki,et al.  Coexistence of antiferromagnetism and superconductivity near the quantum criticality of the heavy-fermion compound CeRhIn5. , 2002, Physical review letters.

[23]  T. Darling,et al.  Anisotropic elastic properties of CeRhIn 5 , 2002, cond-mat/0209005.

[24]  A. Cornelius,et al.  Anisotropic electronic and magnetic properties of the quasi-two-dimensional heavy-fermion antiferromagnet CeRhIn 5 , 2000 .

[25]  Z. Fisk,et al.  Incommensurate magnetic structure of CeRhIn 5 , 2000, cond-mat/0010196.

[26]  Fisk,et al.  Pressure-induced superconductivity in quasi-2D CeRhIn5 , 2000, Physical review letters.

[27]  New Rochelle,et al.  Magnetic Oscillations in Metals , 1984 .

[28]  W. D. Corner,et al.  Rare Earth Magnetism , 1973 .

[29]  B. A. Green,et al.  OBSERVATION OF OSCILLATORY MAGNETOSTRICTION IN BISMUTH AT 4.2 K , 1963 .

[30]  Tatsuo C. Kobayashi,et al.  Fermi Surface, Magnetic and Superconducting Properties of LaRhIn5 and CeTIn5 (T: Co, Rh and Ir) , 2002 .

[31]  A. Ballato,et al.  Poisson's ratio for tetragonal, hexagonal, and cubic crystals , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.