Enhanced Hybridization Sets the Stage for Electronic Nematicity in CeRhIn_{5}.
暂无分享,去创建一个
F. Ronning | M. Jaime | J. D. Thompson | F. F. Balakirev | P. Rosa | S. Thomas | F. F. Balakirev | E. D. Bauer | R. M. Fernandes
[1] G. Ehlers,et al. Tunable emergent heterostructures in a prototypical correlated metal , 2017, 1712.01761.
[2] George Rodriguez,et al. Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions , 2017, Italian National Conference on Sensors.
[3] Z. Fisk,et al. Evolution of ground-state wave function in CeCoIn5 upon Cd or Sn doping , 2017, 1709.06830.
[4] L. Balicas,et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5 , 2017, Nature.
[5] D. Graf,et al. Magnetic field-induced Fermi surface reconstruction and quantum criticality in , 2017 .
[6] E. Bauer,et al. Low temperature magnetic structure of CeRhIn5 by neutron diffraction on absorption-optimized samples , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.
[7] L. Balicas,et al. Field-induced density wave in the heavy-fermion compound CeRhIn5 , 2015, Nature Communications.
[8] Los Alamos National Laboratory,et al. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn₅. , 2014, Physical review letters.
[9] J. Schmalian,et al. What drives nematic order in iron-based superconductors? , 2014, Nature Physics.
[10] L. Tjeng,et al. Correlation between ground state and orbital anisotropy in heavy fermion materials , 2013, Proceedings of the National Academy of Sciences.
[11] M. Carcao,et al. Poster Presentation , 2013 .
[12] N. Hollmann,et al. Crystal-field and Kondo-scale investigations of CeMIn5 (M = Co, Ir, and Rh): A combined x-ray absorption and inelastic neutron scattering study , 2010, 1003.0300.
[13] Michael J. Lawler,et al. Nematic Fermi Fluids in Condensed Matter Physics , 2009, 0910.4166.
[14] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[15] V. Sidorov,et al. Tuning the pressure-induced superconducting phase in doped CeRhIn5. , 2008, Physical review letters.
[16] G. Kotliar,et al. Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5 , 2007, Science.
[17] P. Coleman. Heavy Fermions: Electrons at the Edge of Magnetism , 2006, cond-mat/0612006.
[18] P. Canfield,et al. Versatile and compact capacitive dilatometer , 2006, cond-mat/0610396.
[19] M. Vojta,et al. Fermi-liquid instabilities at magnetic quantum phase transitions , 2006, cond-mat/0606317.
[20] M. Salamon,et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 , 2006, Nature.
[21] A. McCollam,et al. Anomalous de Haas-van Alphen oscillations in CeCoIn5. , 2005, Physical review letters.
[22] S. Kawasaki,et al. Coexistence of antiferromagnetism and superconductivity near the quantum criticality of the heavy-fermion compound CeRhIn5. , 2002, Physical review letters.
[23] T. Darling,et al. Anisotropic elastic properties of CeRhIn 5 , 2002, cond-mat/0209005.
[24] A. Cornelius,et al. Anisotropic electronic and magnetic properties of the quasi-two-dimensional heavy-fermion antiferromagnet CeRhIn 5 , 2000 .
[25] Z. Fisk,et al. Incommensurate magnetic structure of CeRhIn 5 , 2000, cond-mat/0010196.
[26] Fisk,et al. Pressure-induced superconductivity in quasi-2D CeRhIn5 , 2000, Physical review letters.
[27] New Rochelle,et al. Magnetic Oscillations in Metals , 1984 .
[28] W. D. Corner,et al. Rare Earth Magnetism , 1973 .
[29] B. A. Green,et al. OBSERVATION OF OSCILLATORY MAGNETOSTRICTION IN BISMUTH AT 4.2 K , 1963 .
[30] Tatsuo C. Kobayashi,et al. Fermi Surface, Magnetic and Superconducting Properties of LaRhIn5 and CeTIn5 (T: Co, Rh and Ir) , 2002 .
[31] A. Ballato,et al. Poisson's ratio for tetragonal, hexagonal, and cubic crystals , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.