Trapped-ion quantum logic gates based on oscillating magnetic fields.

Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

[1]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[2]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[3]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[4]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[5]  J. Britton,et al.  Errors in trapped-ion quantum gates due to spontaneous photon scattering , 2006, quant-ph/0611048.

[6]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[7]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[8]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[11]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[12]  L-M Duan,et al.  Phase control of trapped ion quantum gates , 2005 .

[13]  E. Knill,et al.  Transport quantum logic gates for trapped ions , 2007, 0707.3646.

[14]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[15]  Experiments with an isolated subatomic particle ar rest , 1990 .

[16]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[17]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[18]  P Tombesi,et al.  Scalable quantum processor with trapped electrons. , 2003, Physical review letters.

[19]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[20]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[21]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[24]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[25]  Enrique Solano,et al.  DETERMINISTIC BELL STATES AND MEASUREMENT OF THE MOTIONAL STATE OF TWO TRAPPED IONS , 1999 .

[26]  J. Chiaverini,et al.  Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays , 2007, 0711.0233.