Antiparasitic activity of synthetic curcumin monocarbonyl analogues against Trichomonas vaginalis.

[1]  E. Pagano,et al.  The clinical efficacy of curcumin‐containing nutraceuticals: An overview of systematic reviews , 2018, Pharmacological research.

[2]  A. Bahtiar,et al.  Synthesis and Cytotoxicity Evaluation of Novel Asymmetrical Mono-Carbonyl Analogs of Curcumin (AMACs) against Vero, HeLa, and MCF7 Cell Lines , 2018, Scientia pharmaceutica.

[3]  A. Mirzazadeh,et al.  Symptom-Based Versus Laboratory-Based Diagnosis of Five Sexually Transmitted Infections in Female Sex Workers in Iran , 2018, AIDS and Behavior.

[4]  S. Gnoatto,et al.  Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative , 2018, Parasitology Research.

[5]  T. Collares,et al.  Synergistic effect of pyrazoles derivatives and doxorubicin in claudin-low breast cancer subtype. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[6]  N. Hunter,et al.  Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. , 2018, The Journal of antimicrobial chemotherapy.

[7]  Tahereh Arablou,et al.  Curcumin and endometriosis: Review on potential roles and molecular mechanisms. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[8]  Yao-wu Fu,et al.  Antiparasitic efficacy of commercial curcumin against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idellus) , 2017 .

[9]  R. B. Giordani,et al.  Diamine derivative anti-Trichomonas vaginalis and anti-Tritrichomonas foetus activities by effect on polyamine metabolism. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[10]  T. Collares,et al.  Antitumor potential of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles in human bladder cancer cells. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[11]  A. Machado,et al.  Reaction Scale and Green Chemistry: Microscale or Macroscale, Which Is Greener? , 2017 .

[12]  L. Savegnago,et al.  Antiparasitic activity of 1,3-dioxolanes containing tellurium in Trichomonas vaginalis. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[13]  A. Rojas de Arias,et al.  Multi-Anti-Parasitic Activity of Arylidene Ketones and Thiazolidene Hydrazines against Trypanosoma cruzi and Leishmania spp. , 2017, Molecules.

[14]  R. Rahimi,et al.  Medicinal plants and their isolated compounds showing anti-Trichomonas vaginalis- activity. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[15]  T. Collares,et al.  Apoptotic effect of chalcone derivatives of 2-acetylthiophene in human breast cancer cells. , 2017, Pharmacological reports : PR.

[16]  W. Setzer,et al.  Natural Products as New Treatment Options for Trichomoniasis: A Molecular Docking Investigation , 2017, Scientia pharmaceutica.

[17]  Jayme L. Dahlin,et al.  The Essential Medicinal Chemistry of Curcumin , 2017, Journal of medicinal chemistry.

[18]  S. Gopi,et al.  Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review , 2016, Journal of traditional and complementary medicine.

[19]  A. P. Frasson,et al.  Anti-Trichomonas vaginalis activity of betulinic acid derivatives. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[20]  F. Nedel,et al.  Antimicrobial and cytotoxic evaluation of eugenol derivatives , 2016, Medicinal Chemistry Research.

[21]  R. Pérez-Montfort,et al.  Potent and Selective Inhibitors of Trypanosoma cruzi Triosephosphate Isomerase with Concomitant Inhibition of Cruzipain: Inhibition of Parasite Growth through Multitarget Activity , 2016, ChemMedChem.

[22]  N. Lopes,et al.  Caatinga plants: Natural and semi-synthetic compounds potentially active against Trichomonas vaginalis. , 2016, Bioorganic & medicinal chemistry letters.

[23]  Jirapornchai Suksaeree,et al.  Quantitation of curcuminoid contents, dissolution profile, and volatile oil content of turmeric capsules produced at some secondary government hospitals , 2016, Journal of food and drug analysis.

[24]  J. Arbiser,et al.  Tris DBA palladium overcomes hypoxia-mediated drug resistance in multiple myeloma , 2015, Leukemia & lymphoma.

[25]  M. Yousefzadi,et al.  Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf , 2016, Cytotechnology.

[26]  Marleen Temmerman,et al.  Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting , 2015, PloS one.

[27]  R. Lund,et al.  Green Synthesis of Chalcones and Microbiological Evaluation , 2015 .

[28]  R. Moo-Puc,et al.  Synthesis of nitro(benzo)thiazole acetamides and in vitro antiprotozoal effect against amitochondriate parasites Giardia intestinalis and Trichomonas vaginalis. , 2015, Bioorganic & medicinal chemistry.

[29]  George B. Hill,et al.  Reaction workup planning: A structured flowchart approach, exemplified in difficult aqueous workup of hydrophilic products , 2015 .

[30]  M. Barrett,et al.  Potent Trypanocidal Curcumin Analogs Bearing a Monoenone Linker Motif Act on Trypanosoma brucei by Forming an Adduct with Trypanothione , 2015, Molecular Pharmacology.

[31]  R. B. Giordani,et al.  Natural and synthetic compound anti-Trichomonas vaginalis: an update review , 2015, Parasitology Research.

[32]  J. Snyder,et al.  Eliminating the Heart from the Curcumin Molecule: Monocarbonyl Curcumin Mimics (MACs) , 2014, Molecules.

[33]  A. Suksamrarn,et al.  Synthesis, cytotoxicity against human oral cancer KB cells and structure-activity relationship studies of trienone analogues of curcuminoids. , 2014, Bioorganic & Medicinal Chemistry Letters.

[34]  K. Zandi,et al.  A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin , 2014, BioMed research international.

[35]  J. Walochnik,et al.  In vitro efficacy of curcumin on Trichomonas vaginalis , 2014, Wiener klinische Wochenschrift.

[36]  Sung-Dae Cho,et al.  Inhibition of specificity protein 1 by dibenzylideneacetone, a curcumin analogue, induces apoptosis in mucoepidermoid carcinomas and tumor xenografts through Bim and truncated Bid. , 2014, Oral oncology.

[37]  P. L. Ee,et al.  Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. , 2014, European journal of medicinal chemistry.

[38]  K. C. Oliveira,et al.  Effects of curcumin on the parasite Schistosoma mansoni: a transcriptomic approach. , 2013, Molecular and biochemical parasitology.

[39]  S. Sudha,et al.  Spectroscopic (FTIR, FT-Raman, NMR and UV) and molecular structure investigations of 1,5-diphenylpenta-1,4-dien-3-one: A combined experimental and theoretical study , 2012 .

[40]  R. Kirkcaldy,et al.  Trichomonas vaginalis Antimicrobial Drug Resistance in 6 US Cities, STD Surveillance Network, 2009–2010 , 2012, Emerging infectious diseases.

[41]  Sapna Jain,et al.  Investigation of Insecticidal Activity of Some α,β-Unsaturated Carbonyl Compounds and Their Synergistic Combination with Natural Products Against Phenacoccus Solenopsis Tinsley , 2012 .

[42]  G. Bhagavannarayana,et al.  Synthesis, crystal growth and characterization of 1,5-diphenylpenta-1,4-dien-3-one: An organic crystal , 2011 .

[43]  B. Aggarwal,et al.  Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. , 2011, Carcinogenesis.

[44]  Hongyu Zhou,et al.  The targets of curcumin. , 2011, Current drug targets.

[45]  C. Cai,et al.  A recyclable fluoroalkylated 1,4-disubstituted [1,2,3]-triazole organocatalyst for aldol condensation of aldehydes and ketones , 2011 .

[46]  Chengguang Zhao,et al.  Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages. , 2010, European journal of medicinal chemistry.

[47]  T. Siatka,et al.  Seasonal Variation in Total Phenolic and Flavonoid Contents and DPPH Scavenging Activity of Bellis perennis L. Flowers , 2010, Molecules.

[48]  A. Zare,et al.  Solvent-Free, Cross-Aldol Condensation Reaction Using Silica-Supported, Phosphorus-Containing Reagents Leading to α,α′-Bis(arylidene)cycloalkanones , 2010 .

[49]  W. Leigh,et al.  A Better Sunscreen: Structural Effects on Spectral Properties , 2010 .

[50]  R. Moo-Puc,et al.  Design, synthesis, and in vitro antiprotozoal, antimycobacterial activities of N-{2-[(7-chloroquinolin-4-yl)amino]ethyl}ureas. , 2010, Bioorganic & medicinal chemistry.

[51]  H. D. de Koning,et al.  Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. , 2010, European journal of medicinal chemistry.

[52]  Jonathan R. Hill A Call for Contributions to Chemical Education across Cultural and National Borders , 2010 .

[53]  S. Handayani SYNTHESIS AND ACTIVITY TEST OF TWO ASYMMETRIC DIBENZALACETONES AS POTENTIAL SUNSCREEN MATERIAL , 2009 .

[54]  F. Abas,et al.  Synthesis and biological evaluation of curcumin-like diarylpentanoid analogues for anti-inflammatory, antioxidant and anti-tyrosinase activities. , 2009, European journal of medicinal chemistry.

[55]  Jian Xiao,et al.  Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. , 2009, Bioorganic & medicinal chemistry.

[56]  B. Aggarwal,et al.  Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. , 2008, Biochemical pharmacology.

[57]  Jian Xiao,et al.  Synthesis and anti-bacterial properties of mono-carbonyl analogues of curcumin. , 2008, Chemical & pharmaceutical bulletin.

[58]  H. Hazarkhani,et al.  Wet 2,4,6-trichloro[1,3,5]triazine (TCT) an efficient catalyst for synthesis of α,α′-bis(substituted-benzylidene) cycloalkanones under solvent-free conditions , 2007 .

[59]  P. Dureja,et al.  Combination of synthetic and natural products as pesticides (CSYNAP): a new class of antifungal agents. , 2007, Research communications in molecular pathology and pharmacology.

[60]  H. Shibata,et al.  Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer , 2006, Molecular Cancer Therapeutics.

[61]  E. Bobrovnikova-Marjon,et al.  Activation of NFκB is inhibited by curcumin and related enones , 2006 .

[62]  D. V. Vander Jagt,et al.  Anti-oxidant activities of curcumin and related enones. , 2005, Bioorganic & medicinal chemistry.

[63]  G. Garber,et al.  Treatment of Infections Caused by Metronidazole-Resistant Trichomonas vaginalis , 2004, Clinical Microbiology Reviews.

[64]  D. Klumpp,et al.  Silencing the ap65 gene reduces adherence to vaginal epithelial cells by Trichomonas vaginalis , 2004, Molecular microbiology.

[65]  C. Demetzos,et al.  Diurnal and seasonal variation of the essential oil labdanes and clerodanes from Cistus monspeliensis L. leaves , 2002 .

[66]  G. Schmid,et al.  Prevalence of metronidazole-resistant Trichomonas vaginalis in a gynecology clinic. , 2001, The Journal of reproductive medicine.

[67]  P. Nyirjesy,et al.  Difficult-to-treat trichomoniasis: results with paromomycin cream. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[68]  J. Shao,et al.  A Facile Synthesis of α, α'-bis(Substituted Benzylidene)cycloalkanones Catalyzed by bis(p-ethoxyphenyl)telluroxide(bmpto) Under Microwave Irradiation , 1997 .

[69]  C. Yashar,et al.  An incremental dosing protocol for women with severe vaginal trichomoniasis and adverse reaction to metronidazole. , 1996, American journal of obstetrics and gynecology.

[70]  R. Cremlyn,et al.  THE SYNTHESIS AND CHLOROSULFONATION OF SOME DIARYLIDENE AND HETEROARYLIDENE KETONES WITH VARYING ALICYCLIC RING SIZE , 1995 .

[71]  D. Martin,et al.  Purification and characterization of human erythrocyte purine nucleoside phosphorylase and its subunits. , 1978, The Journal of biological chemistry.

[72]  L. S. Diamond The establishment of various trichomonads of animals and man in axenic cultures. , 1957, The Journal of parasitology.