Local regularity for mean-field games in the whole space

In this paper, we investigate the Sobolev regularity for mean-field games in the whole space $\Rr^d$. This is achieved by combining integrability for the solutions of the Fokker-Planck equation with estimates for the Hamilton-Jacobi equation in Sobolev spaces. To avoid the mathematical challenges posed due to the lack of compactness, we prove an entropy dissipation estimate for the adjoint variable. This, together with the non-linear adjoint method, yields uniform estimates for solutions of the Hamilton-Jacobi equation in $W^{1,p}_{loc}(\Rr^d)$.

[1]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[2]  P. Lions,et al.  Mean field games , 2007 .

[3]  P. Cardaliaguet,et al.  Second order mean field games with degenerate diffusion and local coupling , 2014, 1407.7024.

[4]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[5]  Alessio Porretta,et al.  On the Planning Problem for the Mean Field Games System , 2014, Dyn. Games Appl..

[6]  Diogo A. Gomes,et al.  Time dependent mean-field games in the superquadratic case , 2013, 1311.6684.

[7]  Diogo A. Gomes,et al.  A-priori estimates for stationary mean-field games , 2012, Networks Heterog. Media.

[8]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[9]  Renato Iturriaga,et al.  MATHER MEASURES SELECTED BY AN APPROXIMATION SCHEME , 2010 .

[10]  Alessio Porretta,et al.  Weak Solutions to Fokker–Planck Equations and Mean Field Games , 2015 .

[11]  Hiroyoshi Mitake,et al.  Existence for stationary mean-field games with congestion and quadratic Hamiltonians , 2015 .

[12]  Yves Achdou,et al.  Finite Difference Methods for Mean Field Games , 2013 .

[13]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.

[14]  Diogo Gomes,et al.  Obstacle Mean-Field Game Problem , 2014, 1410.6942.

[15]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[16]  Martino Bardi,et al.  Explicit solutions of some linear-quadratic mean field games , 2012, Networks Heterog. Media.

[17]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[18]  Diogo A. Gomes,et al.  A stochastic Evans-Aronsson problem , 2013 .

[19]  Diogo A. Gomes,et al.  On the existence of classical solutions for stationary extended mean field games , 2013, 1305.2696.

[20]  Diogo A. Gomes,et al.  Time-Dependent Mean-Field Games with Logarithmic Nonlinearities , 2014, SIAM J. Math. Anal..

[21]  Pierre-Louis Lions,et al.  Long time average of mean field games , 2012, Networks Heterog. Media.