Nanoindentation analysis of 3D printed poly(lactic acid)-based composites reinforced with graphene and multiwall carbon nanotubes

[1]  M. Collins,et al.  Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing , 2018 .

[2]  G. Walker,et al.  Influence of scaffold design on 3D printed cell constructs. , 2018, Journal of biomedical materials research. Part B, Applied biomaterials.

[3]  E. García-Plaza,et al.  Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection , 2017 .

[4]  E. Ivanov,et al.  Mechanical properties investigation of bilayer graphene/poly(methyl methacrylate) thin films at macro, micro and nanoscale , 2016 .

[5]  E. Ivanov,et al.  Applied Study on Mechanics of Nanocomposites with Carbon Nanofillers , 2013 .

[6]  Chien-Chao Huang,et al.  Nanoindentation creep in polycarbonate and syndiotactic polystyrene , 2012 .

[7]  Yuxia Kong,et al.  Study on the preparation and properties of aligned carbon nanotubes/polylactide composite fibers , 2012 .

[8]  L. Avérous,et al.  Effect of crystallization on barrier properties of formulated polylactide , 2012 .

[9]  C. Charitidis Nanoscale Deformation and Nanomechanical Properties of Polydimethylsiloxane (PDMS) , 2011 .

[10]  C. Macosko,et al.  Graphene/Polymer Nanocomposites , 2010 .

[11]  M. Hillmyer,et al.  Toughening Polylactide , 2008 .

[12]  M. M. Chaudhri,et al.  Indentation of elastic solids with a rigid Vickers pyramidal indenter , 2006 .

[13]  J. Youn,et al.  Modeling of effective elastic properties for polymer based carbon nanotube composites , 2006 .

[14]  Jae Ryoun Youn,et al.  Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites , 2005 .

[15]  Junkyung Kim,et al.  Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multi-walled carbon nanotubes / poly(methyl methacrylate) composites , 2005 .

[16]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[17]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[18]  N. Randall Direct measurement of residual contact area and volume during the nanoindentation of coated materials as an alternative method of calculating hardness , 2002 .

[19]  William D. Nix,et al.  Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .

[20]  M. Khakani,et al.  Effect of laser intensity on the microstructural and mechanical properties of pulsed laser deposited diamond-like-carbon thin films , 1999 .

[21]  T. Page,et al.  The effect of coating cracking on the indentation response of thin hard-coated systems , 1998 .

[22]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[23]  George M. Pharr,et al.  On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation , 1992 .

[24]  Emiliano Bilotti,et al.  Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites , 2017 .

[25]  Ala Qattawi,et al.  Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach , 2017 .

[26]  E. Ivanov,et al.  Reinforcement Effects of Carbon Nanotubes in Polypropylene: Rheology, Structure, Thermal Stability, and Nano-, Micro-, and Macromechanical Properties , 2015 .

[27]  E. Liu,et al.  Thermal, mechanical and tribological properties of polyamide 6 matrix composites containing different carbon nanofillers , 2014 .