Plant Surfaces: Structures and Functions for Biomimetic Innovations

[1]  B. Bhushan Springer Handbook of Nanotechnology , 2017 .

[2]  Mohan Srinivasarao,et al.  Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology , 2017 .

[3]  W. Barthlott,et al.  Superhydrophobic Vertically Aligned Carbon Nanotubes for Biomimetic Air Retention under Water (Salvinia Effect) , 2017 .

[4]  W. Barthlott,et al.  Fog Collection on Polyethylene Terephthalate (PET) Fibers: Influence of Cross Section and Surface Structure. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[5]  W. Barthlott,et al.  Microstructures of superhydrophobic plant leaves - inspiration for efficient oil spill cleanup materials , 2016, Bioinspiration & biomimetics.

[6]  W. Barthlott,et al.  Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  K. Koch,et al.  Influence of surface structure and chemistry on water droplet splashing , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Bharat Bhushan,et al.  Bioarchitecture: bioinspired art and architecture—a perspective , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  C. Extrand Origins of Wetting. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[10]  M. Azad Fog Collection on Plant Surfaces and Biomimetic Applications , 2016 .

[11]  M. Weigend,et al.  A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants’ teeth against herbivores , 2016, Scientific Reports.

[12]  H. Butt,et al.  How Water Advances on Superhydrophobic Surfaces. , 2016, Physical review letters.

[13]  Sigurdur T. Thoroddsen,et al.  Drop Impact on a Solid Surface , 2016 .

[14]  W. Barthlott,et al.  Hierarchical Surface Architecture of Plants as an Inspiration for Biomimetic Fog Collectors. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[15]  B. Mazzolai,et al.  3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography , 2015, ACS applied materials & interfaces.

[16]  A. Giacomello,et al.  Unraveling the Salvinia Paradox: Design Principles for Submerged Superhydrophobicity , 2015, 1612.01769.

[17]  W. Barthlott,et al.  Elasticity of the hair cover in air-retaining Salvinia surfaces , 2015 .

[18]  Hayder A. Abdulbari,et al.  Bio‐Inspired Passive Drag Reduction Techniques: A Review , 2015 .

[19]  Julie Gould Learning from nature's best , 2015, Nature.

[20]  W. Barthlott,et al.  Fog collecting biomimetic surfaces: Influence of microstructure and wettability , 2015, Bioinspiration & biomimetics.

[21]  W. Barthlott,et al.  The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness , 2015, Beilstein journal of nanotechnology.

[22]  W. Barthlott,et al.  Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure. , 2014, Integrative and comparative biology.

[23]  L. Bourouiba,et al.  Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. , 2014, Integrative and comparative biology.

[24]  S. Moon,et al.  Repellency of the lotus leaf: contact angles, drop retention, and sliding angles. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[25]  Wilhelm Barthlott,et al.  Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces , 2014, Beilstein journal of nanotechnology.

[26]  Tiezheng Qian,et al.  Pancake bouncing on superhydrophobic surfaces , 2014, Nature Physics.

[27]  F T Malik,et al.  Nature's moisture harvesters: a comparative review , 2014, Bioinspiration & biomimetics.

[28]  H. Bleckmann,et al.  Non-Contaminating Camouflage: Multifunctional Skin Microornamentation in the West African Gaboon Viper (Bitis rhinoceros) , 2014, PloS one.

[29]  A. Cheruth,et al.  Effect of nano-hydrophobic sand layer on Bermudagrass (Cynodon spp.) in urban landscaping , 2014 .

[30]  W. Barthlott,et al.  Biodiversity and technical innovations: bionics , 2014 .

[31]  E. Rodríguez,et al.  Biology and Chemistry of Plant Trichomes , 2013 .

[32]  W. Barthlott,et al.  Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting , 2013, Bioinspiration & biomimetics.

[33]  Duncan Maitland,et al.  Biomedical Technology and Devices, Second Edition , 2013 .

[34]  J. Aizenberg,et al.  Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. , 2013, Nano letters.

[35]  E. Bormashenko Wetting of Real Surfaces , 2013 .

[36]  B. Bhushan Introduction to Tribology: Bhushan/Introduction , 2013 .

[37]  R. Seymour,et al.  Physical gills in diving insects and spiders: theory and experiment , 2013, Journal of Experimental Biology.

[38]  B. Bhushan Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology , 2012 .

[39]  P. Martone,et al.  Drag reduction in wave-swept macroalgae: alternative strategies and new predictions. , 2012, American journal of botany.

[40]  Hamlyn G. Jones,et al.  Energy, Radiation and Temperature Regulation in Plants , 2011 .

[41]  W. Barthlott,et al.  Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. , 2011, Advances in colloid and interface science.

[42]  F. Gensdarmes,et al.  Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release. , 2011, Journal of colloid and interface science.

[43]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[44]  C. Hamlett,et al.  Passive water control at the surface of a superhydrophobic lichen , 2011, Planta.

[45]  W. Barthlott,et al.  Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials , 2011, Beilstein journal of nanotechnology.

[46]  M. Farzaneh,et al.  Anti-icing performance of superhydrophobic surfaces , 2011 .

[47]  Yen Wei,et al.  Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability , 2011 .

[48]  Wilhelm Barthlott,et al.  Dry under water: Comparative morphology and functional aspects of air‐retaining insect surfaces , 2011, Journal of morphology.

[49]  Wilhelm Barthlott,et al.  Superhydrophobicity in perfection: the outstanding properties of the lotus leaf , 2011, Beilstein journal of nanotechnology.

[50]  Erik S. Schneider,et al.  Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention , 2011, Beilstein journal of nanotechnology.

[51]  E. Bormashenko Wetting transitions on biomimetic surfaces , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  W. Barthlott,et al.  The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water , 2010, Advanced materials.

[53]  W. Barthlott,et al.  Applying Methods from Differential Geometry to Devise Stable and Persistent Air Layers Attached to Objects Immersed in Water , 2009 .

[54]  V. Sikka,et al.  Anti-icing superhydrophobic coatings. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[55]  W. Barthlott,et al.  Classification of trichome types within species of the water fern Salvinia, and ontogeny of the egg-beater trichomes , 2009 .

[56]  W. Barthlott,et al.  Hierarchically sculptured plant surfaces and superhydrophobicity. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[57]  W. Barthlott,et al.  Nanostructure of epicuticular plant waxes: Self-assembly of wax tubules , 2009 .

[58]  U. Steiner,et al.  Contributions of iridescence to floral patterning , 2009, Communicative & integrative biology.

[59]  W. Barthlott,et al.  Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  W. Barthlott,et al.  The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. , 2009, Functional plant biology : FPB.

[61]  Bharat Bhushan,et al.  Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion , 2009 .

[62]  Bharat Bhushan,et al.  Multifunctional surface structures of plants: An inspiration for biomimetics , 2009 .

[63]  Lars Chittka,et al.  Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators , 2009, Science.

[64]  B. Bhushan,et al.  Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing , 2008 .

[65]  Kerstin Koch,et al.  The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. , 2008, Micron.

[66]  Bharat Bhushan,et al.  Diversity of structure, morphology and wetting of plant surfaces , 2008 .

[67]  Bharat Bhushan,et al.  Biomimetic hierarchical structure for self-cleaning , 2008 .

[68]  B. Bhushan,et al.  Nanostructures for superhydrophobicity and low adhesion , 2008 .

[69]  Bharat Bhushan,et al.  Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces , 2008 .

[70]  Lei Jiang,et al.  Petal effect: a superhydrophobic state with high adhesive force. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[71]  W. Federle,et al.  Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar , 2008, Proceedings of the Royal Society B: Biological Sciences.

[72]  Xi Zhang,et al.  Superhydrophobic surfaces: from structural control to functional application , 2008 .

[73]  Michael Newton,et al.  Progess in superhydrophobic surface development. , 2008, Soft matter.

[74]  B. Bhushan,et al.  Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces , 2008, Journal of microscopy.

[75]  R. Jetter,et al.  Composition of Plant Cuticular Waxes , 2007 .

[76]  C. Jeffree,et al.  The Fine Structure of the Plant Cuticle , 2007 .

[77]  Andreas Solga,et al.  The dream of staying clean: Lotus and biomimetic surfaces , 2007, Bioinspiration & biomimetics.

[78]  B. Bhushan,et al.  Wetting study of patterned surfaces for superhydrophobicity. , 2007, Ultramicroscopy.

[79]  W. Barthlott,et al.  Synthesis of (S)‐Nonacosan‐10‐ol, the Major Component of Tubular Plant Wax Crystals , 2007 .

[80]  F. Meldrum,et al.  Template-directed control of crystal morphologies. , 2007, Macromolecular bioscience.

[81]  Cathie Martin,et al.  Functional aspects of cell patterning in aerial epidermis. , 2007, Current opinion in plant biology.

[82]  Wilhelm Barthlott,et al.  Chemistry and Crystal Growth of Plant Wax Tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) Leaves on Technical Substrates , 2006 .

[83]  W. Barthlott,et al.  Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. , 2006, Chemistry and physics of lipids.

[84]  C. Neinhuis,et al.  Structure-function relationships of the plant cuticle and cuticular waxes - a smart material? , 2006, Functional plant biology : FPB.

[85]  S. Nagel,et al.  Splashing of liquids: Interplay of surface roughness with surrounding gas. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  R. Jetter,et al.  Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L. , 2006, Phytochemistry.

[87]  T. Shepherd,et al.  The effects of stress on plant cuticular waxes. , 2006, The New phytologist.

[88]  W. Barthlott,et al.  Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability , 2006 .

[89]  Markus Riederer,et al.  Biology of the plant cuticle , 2006 .

[90]  Haeyeon Yang Self-Assembled Nanostructures , 2006 .

[91]  Markus Riederer,et al.  Plant Surface Properties in Chemical Ecology , 2005, Journal of Chemical Ecology.

[92]  C. Neinhuis,et al.  Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. , 2005, Journal of experimental botany.

[93]  F. D. Schryver,et al.  Self-assembly at the liquid/solid interface: STM reveals. , 2005, The journal of physical chemistry. B.

[94]  Peter Walzel,et al.  Wetting and self-cleaning properties of artificial superhydrophobic surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[95]  Walter Federle,et al.  Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[96]  W. Barthlott,et al.  Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). , 2004, Journal of experimental botany.

[97]  Stephan Herminghaus,et al.  How plants keep dry: a physicist's point of view. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[98]  M. Hopkin Butterflies boast ultrablack wings , 2004 .

[99]  Wilhelm Barthlott,et al.  Self‐Assembly of Epicuticular Waxes on Living Plant Surfaces by Atomic Force Microscopy , 2003 .

[100]  Hans-Jürgen Butt,et al.  Physics and Chemistry of Interfaces , 2003 .

[101]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[102]  Abraham Marmur,et al.  Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? , 2003 .

[103]  M. Riedel,et al.  Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers , 2003, Planta.

[104]  C. Extrand,et al.  Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces , 2002 .

[105]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Stanislav N. Gorb,et al.  Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny , 2001 .

[107]  R. Jetter,et al.  Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. , 2001, Plant physiology.

[108]  W. Barthlott,et al.  Movement and regeneration of epicuticular waxes through plant cuticles , 2001, Planta.

[109]  P. Kolattukudy Plant Cuticle and Suberin , 2001 .

[110]  C. Tropea,et al.  Outcomes from a drop impact on solid surfaces , 2001 .

[111]  W. Barthlott,et al.  Chemical Composition and Recrystallization of Epicuticular Waxes: Coiled Rodlets and Tubules , 2000 .

[112]  D. W. Bechert,et al.  Fluid Mechanics of Biological Surfaces and their Technological Application , 2000, Naturwissenschaften.

[113]  Hans Christian von Baeyer,et al.  The Lotus Effect , 2000 .

[114]  W. Barthlott,et al.  Direct Access to Plant Epicuticular Wax Crystals by a New Mechanical Isolation Method , 2000, International Journal of Plant Sciences.

[115]  W. Barthlott,et al.  ULTRASTRUCTURE, CHEMICAL COMPOSITION, AND RECRYSTALLIZATION OF EPICUTICULAR WAXES : TRANSVERSELY RIDGED RODLETS , 1999 .

[116]  D. Dorset Development of lamellar structures in natural waxes - an electron diffraction investigation , 1999 .

[117]  W. Barthlott,et al.  Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens (Rhacocarpaceae): a puzzling architecture among plants , 1998, Planta.

[118]  A. Weber Floral Biology. Studies on floral evolution in animal-pollinated plants, D.G. Lloyd, S.C.H. Barrett (Eds.). Chapman & Hall, New York (1995), 410, S., US $ 79.5, ISBN: 0-412-04341-6 , 1998 .

[119]  Wilhelm Barthlott,et al.  Classification and terminology of plant epicuticular waxes , 1998 .

[120]  Markus Riederer,et al.  Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae) , 1997, Oecologia.

[121]  Honghi Tran,et al.  Spread and rebound of liquid droplets upon impact on flat surfaces , 1997 .

[122]  Wilhelm Barthlott,et al.  Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces , 1997 .

[123]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[124]  D. G. Lloyd,et al.  Floral biology: studies on floral evolution in animal-pollinated plants. , 1997 .

[125]  G. Kerstiens Plant Cuticles-an Integrated Functional Approach , 1996 .

[126]  Saeed R. Khan Calcium Oxalate in Biological Systems , 1995 .

[127]  R. Jetter,et al.  In vitro Reconstitution of Epicuticular Wax Crystals: Formation of Tubular Aggregates by Long‐Chain Secondary Alkanediols , 1995 .

[128]  C. Tropea,et al.  Droplet-wall collisions: Experimental studies of the deformation and breakup process , 1995 .

[129]  Dimos Poulikakos,et al.  Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling , 1995 .

[130]  W. Barthlott,et al.  Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicatae: Salviniaceae) , 1994 .

[131]  R. Jetter,et al.  Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits , 1994, Planta.

[132]  P. Schuepp,et al.  Tansley Review No. 59 Leaf boundary layers. , 1993, The New phytologist.

[133]  S. Robinson,et al.  Wax as a Mechanism for Protection Against Photoinhibition - a Study of Cotyledon-Orbiculata , 1993 .

[134]  William K. Smith,et al.  Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets , 1991 .

[135]  W. Barthlott,et al.  Surface volume ratios of plants with special consideration of succulents , 1991 .

[136]  R. Ohsugi,et al.  δ13C Values and the Occurrence of Suberized Lamellae in Some Panicum Species. , 1988 .

[137]  M. Lane,et al.  Flower petal microtexture is a tactile cue for bees. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Wilhelm Barthlott,et al.  Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects , 1981 .

[139]  C. Stirton,et al.  Pigment distribution, light reflection and cell structure in petals , 1981 .

[140]  W. Barthlott Morphogenese und Mikromorphologie komplexer Cuticular‐Faltungsmuster an Blüten‐Trichomen von Antirrhinum L. (Scrophulariaceae) , 1980, Berichte der Deutschen Botanischen Gesellschaft.

[141]  E. A. Baker,et al.  ULTRASTRUCTURE AND RECRYSTALLIZATION OF PLANT EPICUTICULAR WAXES , 1975 .

[142]  G. Cox,et al.  The anatomy of the leaf surface: The first line of defence , 1973 .

[143]  P. Schuepp Model experiments on free-convection heat and mass transfer of leaves and plant elements , 1973 .

[144]  B. Juniper,et al.  The cuticles of plants , 1971 .

[145]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[146]  Y. Toda Physiological Studies on Schistostega osmundacea (Dicks.) Mohr , 1918 .

[147]  W. Barthlott,et al.  Bionics and Biodiversity – Bio-inspired Technical Innovation for a Sustainable Future , 2016 .

[148]  W. Barthlott,et al.  Orchid seed diversity : a scanning electron microscopy survey , 2014 .

[149]  B. Bhushan,et al.  Lotus Versus Rose: Biomimetic Surface Effects , 2012 .

[150]  Bharat Bhushan,et al.  Green tribology : biomimetics, energy conservation and sustainability , 2012 .

[151]  B. Bhushan,et al.  Multifunctional Plant Surfaces and Smart Materials , 2010 .

[152]  L. Schreiber,et al.  Water and solute permeability of plant cuticles , 2009 .

[153]  E. Caulton,et al.  Pollen and Spores: Applications with Special Emphasis on Aerobiology and Allergy , 2009 .

[154]  Stanislav N. Gorb,et al.  Functional surfaces in biology , 2009 .

[155]  Bharat Bhushan,et al.  Nanotribology And Nanomechanics- An Introduction , 2008 .

[156]  A. Yarin Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing ... , 2006 .

[157]  M. Riederer Annual Plant Reviews Volume 23 Biology of the Plant Cuticle , 2006 .

[158]  K. Wandelt,et al.  Structural analysis of wheat wax (Triticum aestivum, c.v. ‘Naturastar’ L.): from the molecular level to three dimensional crystals , 2005, Planta.

[159]  S. G. Reynolds,et al.  Grasslands of the world. , 2005 .

[160]  G. Wagner,et al.  New approaches for studying and exploiting an old protuberance, the plant trichome. , 2004, Annals of botany.

[161]  James R. Ehleringer,et al.  Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa , 2004, Oecologia.

[162]  Hendrik Bargel,et al.  Plant cuticles: Multifunctional interfaces between plant and environment , 2004 .

[163]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[164]  L. Kunst,et al.  Biosynthesis and secretion of plant cuticular wax. , 2003, Progress in lipid research.

[165]  M. G. Holmes,et al.  Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species , 2002 .

[166]  B. Bhushan,et al.  Introduction to Tribology , 2002 .

[167]  M. Hodson,et al.  Chapter 5 Silicon deposition in higher plants , 2001 .

[168]  S. Gorb Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.

[169]  A. Fahn Structure and function of secretory cells , 2000 .

[170]  Report of the Executive Committee for 1998. , 2000, Acta crystallographica. Section A, Foundations of crystallography.

[171]  B. Hölldobler,et al.  Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant-plants , 2000, CHEMOECOLOGY.

[172]  Douglas L Dorset Development of lamellar structures in natural waxes - an electron diffraction investigation , 1999 .

[173]  P. J. Holloway Plant Cuticles: Physicochemical Characteristics and Biosynthesis , 1994 .

[174]  K. Jolley,et al.  Self-Assembly and Self-Organization in Micellar Liquid Crystals , 1992 .

[175]  M. Wolter,et al.  Quantitative evaluation of epicuticular wax alterations as induced by surfactant treatment , 1991 .

[176]  Wolfram Köller,et al.  The Plant Cuticle , 1991 .

[177]  M. Knoche,et al.  Concentration effects and regeneration of epicuticular waxes after treatment with Triton X-100 surfactant , 1988 .

[178]  M. Knoche,et al.  Changes in leaf micromorphology induced by surfactant application , 1988 .

[179]  Ce Jeffree,et al.  The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution , 1986 .

[180]  J. Israelachvili Intermolecular and surface forces , 1985 .

[181]  H. Behnke Plant Trichomes — Structure and Ultrastructure: General Terminology, Taxonomic Applications, and Aspects of Trichome-Bacteria Interaction in Leaf Tips of Dioscorea , 1984 .

[182]  E. Wollenweber The Distribution and Chemical Constituents of the Farinose Exudates in Gymnogrammoid Ferns , 1978 .

[183]  C. Jeffree,et al.  Structural determination of secondary alcohols from plant epicuticular waxes , 1976 .

[184]  D. M. Gates Energy Exchange and Transpiration , 1976 .

[185]  L. Jones,et al.  Silica in soils, plants, and animals. , 1967 .

[186]  A. Adamson Physical chemistry of surfaces , 1960 .

[187]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .