Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides

We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin–orbit coupling are calculated in the G0W0 approximation, and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment at various heterostructure interfaces. The sensitivity of the band structures to the in-plane lattice constant is analyzed and rationalized in terms of the electronic structure. Finally, the q-dependent dielectric functions and effective electron and hole masses are obtained from the QP band structure and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on...

[1]  Vladan Stevanović,et al.  Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation:Fitted elemental-phase Reference Energies (FERE) , 2012 .

[2]  Li Yang,et al.  Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides , 2013, 1306.0620.

[3]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[4]  R. Asgari,et al.  Effective lattice Hamiltonian for monolayer MoS 2 : Tailoring electronic structure with perpendicular electric and magnetic fields , 2013, 1302.5901.

[5]  Hisato Yamaguchi,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature Materials.

[6]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[7]  Wang Yao,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[8]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[9]  Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. , 2014, Nano letters.

[10]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[11]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[12]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[13]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[14]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[15]  David S. Ginley,et al.  Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities , 1978 .

[16]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[17]  R. Hennig,et al.  Computational Screening of 2D Materials for Photocatalysis. , 2015, The journal of physical chemistry letters.

[18]  Steven G. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[19]  Jivr'i Klimevs,et al.  Predictive GW calculations using plane waves and pseudopotentials , 2014, 1404.3101.

[20]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[21]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[22]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[23]  A. Jauho,et al.  Graphene antidot lattices: designed defects and spin qubits. , 2008, Physical review letters.

[24]  K. Thygesen,et al.  How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2 , 2013, 1311.1384.

[25]  N. Russo,et al.  About the Mulliken electronegativity in DFT , 2004, physics/0405005.

[26]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Multi-terminal electrical transport measurements of molybdenum disulphide using van der Waals heterostructure device platform , 2014, 1412.5977.

[28]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[29]  B. K. Gupta,et al.  Artificially stacked atomic layers: toward new van der Waals solids. , 2012, Nano letters.

[30]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[31]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[32]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[33]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[34]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[35]  Jonathan N. Coleman,et al.  Two‐Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. , 2011 .

[36]  K. Thygesen,et al.  Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS 2 from first principles , 2012, 1206.2003.

[37]  L. Fu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[38]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[39]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  葉德夫,et al.  氮基氧化石墨烯量子點光觸媒之完全分解水研究 ; Nitrogen-Doped Graphene-Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination , 2015 .

[42]  A. Krasheninnikov,et al.  Are we van der Waals ready? , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[44]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[45]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[46]  L. Wirtz,et al.  Excitons in boron nitride nanotubes: dimensionality effects. , 2005, Physical review letters.

[47]  Ruitao Lv,et al.  Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. , 2013, ACS nano.

[48]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[49]  A. Burger,et al.  Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy , 2014, Scientific Reports.

[50]  Jian Zhen Ou,et al.  Two‐Dimensional Molybdenum Trioxide and Dichalcogenides , 2013 .

[51]  L. Wirtz,et al.  Effect of spin-orbit interaction on the excitonic effects in single-layer, double-layer, and bulk MoS2 , 2013, 1306.4257.

[52]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[53]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[54]  Linze Li,et al.  Tuning Electronic Structure of Bilayer MoS2 by Vertical Electric Field: A First-Principles Investigation , 2012 .

[55]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[56]  Yong-Wei Zhang,et al.  Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2 , 2012, 1211.5653.

[57]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[58]  T. T. Rantala,et al.  Kohn-Sham potential with discontinuity for band gap materials , 2010, 1003.0296.

[59]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[60]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.

[61]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[62]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[63]  C. Gu,et al.  CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. , 2014, Nanoscale.

[64]  Sefaattin Tongay,et al.  Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling , 2014, Nature Communications.

[65]  Thomas Olsen,et al.  Quasiparticle GW calculations for solids, molecules, and two-dimensional materials , 2013, 1305.6512.

[66]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[67]  Olle Eriksson,et al.  Two-Dimensional Materials from Data Filtering and Ab Initio Calculations , 2013 .

[68]  Ravishankar Sundararaman,et al.  Regularization of the Coulomb singularity in exact exchange by Wigner-Seitz truncated interactions: Towards chemical accuracy in nontrivial systems , 2013, 1302.6204.