Error rate performance of coded free-space optical links over strong turbulence channels

Error control coding can be used over free-space optical (FSO) links to mitigate turbulence-induced fading. We present error rate performance bounds for coded FSO communication systems operating over atmospheric turbulence channels, which are modeled as a correlated K distribution under strong turbulence conditions. We derive an upper bound on the pairwise error probability (PEP) and then apply the union-bound technique in conjunction with the derived PEP to obtain upper bounds on the bit error rate. Simulation results are further demonstrated to verify the analytical results.