New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme.

[1]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[2]  C. Kundrot,et al.  RNA Tertiary Structure Mediation by Adenosine Platforms , 1996, Science.

[3]  E. Westhof,et al.  RNA tectonics: towards RNA design. , 1996, Folding & design.

[4]  D. Herschlag,et al.  Isolation of a local tertiary folding transition in the context of a globally folded RNA , 1996, Nature Structural Biology.

[5]  E Westhof,et al.  The environment of two metal ions surrounding the splice site of a group I intron. , 1996, The EMBO journal.

[6]  P. Zarrinkar,et al.  The kinetic folding pathway of the Tetrahymena ribozyme reveals possible similarities between RNA and protein folding , 1996, Nature Structural Biology.

[7]  G. Mohr,et al.  A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. , 1996, Journal of molecular biology.

[8]  James W. Brown,et al.  Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B F Lang,et al.  The mitochondrial DNA of Allomyces macrogynus: the complete genomic sequence from an ancestral fungus. , 1996, Journal of molecular biology.

[10]  R. Kaptein,et al.  Affinity selective isolation of ligands from peptide libraries through display on a lac repressor "headpiece dimer". , 1996, Journal of molecular biology.

[11]  K. Weeks,et al.  Assembly of a Ribonucleoprotein Catalyst by Tertiary Structure Capture , 1996, Science.

[12]  T. Cech,et al.  Relative orientation of RNA helices in a group 1 ribozyme determined by helix extension electron microscopy. , 1995, The EMBO journal.

[13]  K. Weeks,et al.  Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5′ splice site domain , 1995, Cell.

[14]  K. Weeks,et al.  Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron. , 1995, Biochemistry.

[15]  D. Crothers,et al.  Bent helix formation between RNA hairpins with complementary loops. , 1995, Science.

[16]  D. Crothers,et al.  Determinants of RNA hairpin loop-loop complex stability. , 1995, Journal of molecular biology.

[17]  D Gautheret,et al.  Identification of base-triples in RNA using comparative sequence analysis. , 1995, Journal of molecular biology.

[18]  F. Michel,et al.  Frequent use of the same tertiary motif by self‐folding RNAs. , 1995, The EMBO journal.

[19]  J. Sugiyama,et al.  Phylogenetic placement of the basidiomycetous yeastsKondoa malvinella andRhodosporidium dacryoidum, and the anamorphic yeastSympodiomycopsis paphiopedili by means of 18S rRNA gene sequence analysis , 1994 .

[20]  K. Flaherty,et al.  Three-dimensional structure of a hammerhead ribozyme , 1994, Nature.

[21]  J. Pawlowski,et al.  Taxonomic identification of foraminifera using ribosomal DNA sequences , 1994 .

[22]  T. Cech,et al.  Coaxially stacked RNA helices in the catalytic center of the Tetrahymena ribozyme. , 1994, Science.

[23]  C Massire,et al.  DRAWNA: a program for drawing schematic views of nucleic acids. , 1994, Journal of molecular graphics.

[24]  N. Pace,et al.  Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. , 1994, The EMBO journal.

[25]  P. Zarrinkar,et al.  Kinetic intermediates in RNA folding. , 1994, Science.

[26]  G. F. Joyce,et al.  Inventing and improving ribozyme function: rational design versus iterative selection methods. , 1994, Trends in biotechnology.

[27]  T. Cech,et al.  Two major tertiary folding transitions of the Tetrahymena catalytic RNA. , 1994, The EMBO journal.

[28]  E. Westhof,et al.  Three-dimensional working model of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Cech,et al.  A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site. , 1994, Genes & development.

[30]  A. Peyman P2 functions as a spacer in the Tetrahymena ribozyme. , 1994, Nucleic acids research.

[31]  E Westhof,et al.  Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. , 1994, Journal of molecular biology.

[32]  S. Johansen,et al.  An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing , 1994, Cell.

[33]  T. Cech,et al.  GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. , 1994, Journal of molecular biology.

[34]  T. Cech,et al.  Visualization of a tertiary structural domain of the Tetrahymena group I intron by electron microscopy. , 1994, Journal of molecular biology.

[35]  G. Lemay,et al.  Correlation between the presence of a self-splicing intron in the 25S rDNA of C.albicans and strains susceptibility to 5-fluorocytosine. , 1993, Nucleic acids research.

[36]  S. Strobel,et al.  Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. , 1993, Biochemistry.

[37]  E Westhof,et al.  Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components. , 1993, Journal of molecular biology.

[38]  E. Westhof Modelling the three-dimensional structure of ribonucleic acids , 1993 .

[39]  C. Kundrot,et al.  Crystallization of ribozymes and small RNA motifs by a sparse matrix approach. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Cech,et al.  An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. , 1993, Biochemistry.

[41]  F. Michel,et al.  Sequence of the mitochondrial gene encoding subunit I of cytochrome oxidase in Saccharomyces douglasii. , 1993, Gene.

[42]  B. Lang,et al.  Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns. , 1993, Nucleic acids research.

[43]  D. Turner,et al.  Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure. , 1993, Biochemistry.

[44]  E. Westhof,et al.  Activation of the catalytic core of a group I intron by a remote 3' splice junction. , 1992, Genes & development.

[45]  T. Cech,et al.  RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme , 1992, Nature.

[46]  Douglas H Turner,et al.  RNA pseudoknots , 1992, Current Biology.

[47]  D. Herschlag Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. , 1992, Biochemistry.

[48]  M. Belfort,et al.  Folding of group I introns from bacteriophage T4 involves internalization of the catalytic core. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  T. Cech,et al.  Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity , 1991, Cell.

[50]  James W. Brown,et al.  Long-range structure in ribonuclease P RNA. , 1991, Science.

[51]  E. Westhof,et al.  Function of P11, a tertiary base pairing in self-splicing introns of subgroup IA. , 1991, Journal of molecular biology.

[52]  T. Cech,et al.  A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus. , 1991, Nucleic acids research.

[53]  P. Slonimski,et al.  Incipient mitochondrial evolution in yeasts. II. The complete sequence of the gene coding for cytochrome b in Saccharomyces douglasii reveals the presence of both new and conserved introns and discloses major differences in the fixation of mutations in evolution. , 1991, Journal of molecular biology.

[54]  A. T. Perrotta,et al.  Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site. , 1991, Science.

[55]  T. Cech,et al.  Visualizing the higher order folding of a catalytic RNA molecule. , 1991, Science.

[56]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[57]  E. Wagner,et al.  Control of replication of plasmid R1: formation of an initial transient complex is rate‐limiting for antisense RNA–target RNA pairing. , 1990, The EMBO journal.

[58]  E. Wagner,et al.  Control of replication of plasmid R1: structures and sequences of the antisense RNA, CopA, required for its binding to the target RNA, CopT. , 1990, The EMBO journal.

[59]  G. F. Joyce,et al.  Minimum secondary structure requirements for catalytic activity of a self-splicing group I intron. , 1990, Biochemistry.

[60]  T. Cech,et al.  An ultraviolet-inducible adenosine-adenosine cross-link reflects the catalytic structure of the Tetrahymena ribozyme. , 1990, Biochemistry.

[61]  T. Cech,et al.  A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self‐splicing. , 1989, The EMBO journal.

[62]  François Michel,et al.  The guanosine binding site of the Tetrahymena ribozyme , 1989, Nature.

[63]  G. F. Joyce,et al.  Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5. , 1989, Nucleic acids research.

[64]  T. Cech,et al.  Defining the inside and outside of a catalytic RNA molecule. , 1989, Science.

[65]  T. Cech,et al.  Selection of circularization sites in a group I IVS RNA requires multiple alignments of an internal template-like sequence , 1987, Cell.

[66]  J. Tomizawa Control of cole1 plasmid replication: Initial interaction of RNA I and the primer transcript is reversible , 1985, Cell.

[67]  J. Tomizawa Control of cole 1 plasmid replication: The process of binding of RNA I to the primer transcript , 1984, Cell.

[68]  T. Richmond,et al.  Solvent accessible surface area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect. , 1984, Journal of molecular biology.

[69]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[70]  E. Westhof,et al.  Loop stereochemistry and dynamics in transfer RNA. , 1983, Journal of biomolecular structure & dynamics.

[71]  P. Zarrinkar,et al.  The P9.1-P9.2 peripheral extension helps guide folding of the Tetrahymena ribozyme. , 1996, Nucleic acids research.

[72]  T. Cech,et al.  Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. , 1996, RNA.

[73]  E Westhof,et al.  Function of a pseudoknot in the suppression of an alternative splicing event in a group I intron. , 1996, Biochimie.

[74]  E. Westhof,et al.  The Structure of Group I Ribozymes , 1996 .

[75]  S. Strobel,et al.  Translocation of an RNA duplex on a ribozyme , 1994, Nature Structural Biology.

[76]  R. Gutell,et al.  Representation of the secondary and tertiary structure of group I introns , 1994, Nature Structural Biology.

[77]  T. Cech 11 Structure and Mechanism of the Large Catalytic RNAs: Group I and Group II Introns and Ribonuclease P , 1993 .

[78]  G. T. van der Horst,et al.  Reconstitution of a group I intron self-splicing reaction with an activator RNA. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[79]  T. Cech Self-splicing of group I introns. , 1990, Annual review of biochemistry.

[80]  B. Ganem RNA world , 1987, Nature.

[81]  Thomas A. Kunkel,et al.  Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[82]  H. Grosjean,et al.  On codon- anticodon interactions. , 1980, Molecular biology, biochemistry, and biophysics.