NANO ELECTROMECHANICAL SENSORS BASED ON CARBON NANOTUBES

[1]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[2]  J. Robertson,et al.  Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes , 2005 .

[3]  E. Campbell,et al.  A Three-Terminal Carbon Nanorelay , 2004 .

[4]  M. Tonteling,et al.  Localized and CMOS compatible growth of carbon nanotubes on a 3 /spl times/ 3 /spl mu/m/sup 2/ microheater spot , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[5]  Phaedon Avouris,et al.  Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes , 2005, Science.

[6]  R. Superfine,et al.  Resonant oscillators with carbon-nanotube torsion springs. , 2004, Physical review letters.

[7]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[8]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[9]  Christofer Hierold,et al.  Thermography on a suspended microbridge using confocal Raman scattering , 2006 .

[10]  R. Weller,et al.  Characterization of platinum films deposited by focused ion beam-assisted chemical vapor deposition , 2002 .

[11]  François Léonard,et al.  Energy conversion efficiency in nanotube optoelectronics. , 2005, Nano letters.

[12]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[13]  Christofer Hierold,et al.  Electrothermal effects at the microscale and their consequences on system design , 2006 .

[14]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[15]  T Brandes,et al.  Single-electron-phonon interaction in a suspended quantum dot phonon cavity. , 2003, Physical review letters.

[16]  Jimmy Xu,et al.  Highly ordered carbon nanotube arrays and IR detection , 2001 .

[17]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[18]  Jing Kong,et al.  Electric-field-directed growth of aligned single-walled carbon nanotubes , 2001 .

[19]  A Erbe,et al.  Nanomechanical resonator shuttling single electrons at radio frequencies. , 2001, Physical review letters.

[20]  Qian Wang,et al.  Piezoresistance of carbon nanotubes on deformable thin-film membranes , 2005 .

[21]  Victor M. Bright,et al.  Process integration of carbon nanotubes into microelectromechanical systems , 2006 .

[22]  Mats Jonson,et al.  Electromechanical instability in suspended carbon nanotubes. , 2005, Nano letters.

[23]  J. P. Chen,et al.  Magnetic properties of nanophase cobalt particles synthesized in inversed micelles , 1994 .

[24]  Single walled carbon nanotubes as active elements in nano bridge based NEMS , 2005, 5th IEEE Conference on Nanotechnology, 2005..

[25]  Axel Kowald,et al.  Systems Biology in Practice: Concepts, Implementation and Application , 2005 .

[26]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[27]  Richard Superfine,et al.  Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs , 2003 .

[28]  Raman intensity mapping of single-walled carbon nanotubes , 2007 .

[29]  Larry Epp,et al.  Electromechanical carbon nanotube switches for high-frequency applications. , 2006, Nano letters.

[30]  Y. Blanter,et al.  Carbon nanotubes as nanoelectromechanical systems , 2003 .

[31]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[32]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[33]  Seiji Akita,et al.  Carbon nanotube oscillators toward zeptogram detection , 2005 .

[34]  G. Amaratunga,et al.  Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube , 2005 .

[35]  Belita Koiller,et al.  Electromechanical effects in carbon nanotubes: Ab initio and analytical tight-binding calculations , 2003 .

[36]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[37]  Raman modes of index-identified freestanding single-walled carbon nanotubes. , 2005, Physical review letters.

[38]  C. Hierold,et al.  Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. , 2006, Nano letters.

[39]  W.J. Li,et al.  Fabrication of CNT-based MEMS piezoresistive pressure sensors using DEP nanoassembly , 2005, 5th IEEE Conference on Nanotechnology, 2005..

[40]  W.J. Li,et al.  A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[41]  Jannik C. Meyer,et al.  Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining , 2007 .

[42]  A. Ding,et al.  Formation mechanism of single-wall carbon nanotubes on liquid-metal particles , 1999 .

[43]  M. Arenz,et al.  Monodispersed cluster-assembled materials , 2006 .

[44]  M. Dresselhaus Carbon nanotubes , 1995 .

[45]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[46]  Byungkyu Kim,et al.  Fusion of biomedical microcapsule endoscope and microsystem technology , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[47]  Satish Nagarajaiah,et al.  Nanotube film based on single-wall carbon nanotubes for strain sensing , 2004 .

[48]  C. Hierold From micro- to nanosystems: mechanical sensors go nano , 2004 .

[49]  Phaedon Avouris,et al.  Nanotube electronics and optoelectronics , 2006 .

[50]  Olivier Français,et al.  Chemical sensing: millimeter size resonant microcantilever performance , 2004 .

[51]  J. Kong,et al.  Electrical generation and absorption of phonons in carbon nanotubes , 2004, Nature.

[52]  C. Hierold,et al.  A method for enhanced analysis of specific as‐grown carbon nanotubes , 2006 .

[53]  T. L. Wright,et al.  Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever , 2006 .

[54]  H. Dai,et al.  Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. , 2003, Physical review letters.

[55]  S. Pennycook,et al.  Nucleation of single-walled carbon nanotubes. , 2003, Physical review letters.

[56]  Liwei Lin,et al.  Local synthesis of silicon nanowires and carbon nanotubes on microbridges , 2003 .

[57]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[58]  A. Jungen,et al.  Fabrication of discrete nanoscaled force sensors based on single-walled carbon nanotubes , 2006, IEEE Sensors Journal.

[59]  Phaedon Avouris,et al.  Electrically excited, localized infrared emission from single carbon nanotubes. , 2006, Nano letters.

[60]  Markus Brink,et al.  Tuning carbon nanotube band gaps with strain. , 2003, Physical review letters.

[61]  Siegmar Roth,et al.  Single-Molecule Torsional Pendulum , 2005, Science.

[62]  C. Hierold,et al.  Amorphous carbon contamination monitoring and process optimization for single-walled carbon nanotube integration , 2007, Nanotechnology.

[63]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[64]  T. Ono,et al.  Nanomechanical structures with an integrated carbon nanotube , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[65]  M. S. Dresselhaus,et al.  Observations of the D-band feature in the Raman spectra of carbon nanotubes , 2001 .

[66]  F. Ducastelle,et al.  Root-growth mechanism for single-wall carbon nanotubes. , 2001, Physical review letters.

[67]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[68]  Charles M. Lieber,et al.  Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes , 2002 .

[69]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[70]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[71]  L. Hofer,et al.  Structure of Carbon Deposited from Carbon Monoxide on Iron, Cobalt and Nickel , 1955 .

[72]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[73]  C. Hierold,et al.  Nano electromechanical transducer based on single walled carbon nanotubes , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[74]  S. Heun,et al.  Selective metal electrodeposition through doping modulation of semiconductor surfaces , 2005 .

[75]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[76]  Riichiro Saito,et al.  Raman spectroscopy on isolated single wall carbon nanotubes , 2002 .

[77]  C. Hierold,et al.  Fabrication of single-walled carbon-nanotube-based pressure sensors. , 2006, Nano letters.

[78]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .