Ocular absorption following topical delivery

Abstract Most ocular diseases are treated with topical application of eyedrops. After instillation of an eyedrop, typically less than 5% of the applied drug penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is absorbed and enters the systemic circulation. Ocular absorption of topically applied ophthalmic drugs is limited by rapid precorneal drug elimination due to solution drainage and systemic absorption from the conjunctival sac. Another factor that limits ocular absorption is the corneal epithelial barrier. In the eye drugs are distributed from the aqueous humor to intraocular tissues and eliminated mainly via aqueous humor turnover and venous blood flow in the anterior uvea. Because of the publication of several reviews [1–3] on ocular drug absorption this review will focus on the most recent literature.

[1]  R. Schoenwald Ocular pharmacokinetics/pharmacodynamics , 1993 .

[2]  M. Maniaci,et al.  Expression of keratins K12, K4 and K14 during development of ocular surface epithelium. , 1994, Current eye research.

[3]  H F Edelhauser,et al.  Comparison of conjunctival and corneal surface areas in rabbit and human. , 1988, Current eye research.

[4]  G. Holland,et al.  Transscleral iontophoresis of foscarnet. , 1993, American journal of ophthalmology.

[5]  O. Geyer,et al.  Combined timolol and pilocarpine vs pilocarpine alone and timolol alone in the treatment of glaucoma. , 1994, American journal of ophthalmology.

[6]  V. Lee,et al.  Improving the safety of topically applied timolol in the pigmented rabbit through manipulation of formulation composition. , 1992, Experimental eye research.

[7]  A. Urtti,et al.  Sulfobutyl ether β-cyclodextrin (SBE-β-CD) in eyedrops improves the tolerability of a topically applied pilocarpine prodrug in rabbits , 1995 .

[8]  M. B. Shields,et al.  Comparison of two treatment schedules for combined timolol and dipivefrin therapy. , 1986, American journal of ophthalmology.

[9]  A. Ludwig,et al.  Evaluation of viscous ophthalmic vehicles containing carbomer by slit-lamp fluorophotometry in humans , 1990 .

[10]  J. Robinson,et al.  The effect of polyethylene glycol molecular weight on corneal transport and the related influence of penetration enhancers , 1992 .

[11]  T. F. Patton,et al.  Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. , 1987, Journal of pharmaceutical sciences.

[12]  V. Stella,et al.  The effect of a modified beta-cyclodextrin, SBE4-beta-CD, on the aqueous stability and ocular absorption of pilocarpine. , 1994, Current eye research.

[13]  T. Maren,et al.  pH and drug ionization affects ocular pressure lowering of topical carbonic anhydrase inhibitors. , 1993, Investigative ophthalmology & visual science.

[14]  V. Lee,et al.  Rate limiting barrier to the penetration of ocular hypotensive beta blockers across the corneal epithelium in the pigmented rabbit. , 1990, Journal of ocular pharmacology.

[15]  A. Konstas,et al.  Collagens in the aged human macular sclera. , 1993, Current eye research.

[16]  J. Baum,et al.  Transscleral iontophoresis of cefazolin, ticarcillin, and gentamicin in the rabbit. , 1986, Ophthalmology.

[17]  S. I. Saleh,et al.  Comparative dissolution characteristics of bropirimine-β-cyclodextrin inclusion complex and its solid dispersion with PEG 6000 , 1993 .

[18]  K. Green,et al.  Effects of calcium channel blockers on rabbit corneal endothelial function. , 1994, Current eye research.

[19]  Niesman Mr The use of liposomes as drug carriers in ophthalmology. , 1992 .

[20]  J. Szejtli,et al.  Medicinal Applications of Cyclodextrins , 1994, Medicinal research reviews.

[21]  D. Lee,et al.  Experimental transscleral iontophoresis of ciprofloxacin. , 1991, Journal of ocular pharmacology.

[22]  S. Klyce,et al.  Transport processes across the rabbit corneal epithelium: a review. , 1985, Current eye research.

[23]  V. H. Lee,et al.  Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: a comparison with corneal penetration. , 1991, Current eye research.

[24]  A. Urtti,et al.  Minimizing systemic absorption of topically administered ophthalmic drugs. , 1993, Survey of ophthalmology.

[25]  D. Epstein,et al.  Additive effect of epinephrine to timolol therapy in primary open angle glaucoma. , 1982, Archives of ophthalmology.

[26]  G. Grass,et al.  Mechanisms of corneal drug penetration. II: Ultrastructural analysis of potential pathways for drug movement. , 1988, Journal of pharmaceutical sciences.

[27]  L. Szente,et al.  Proceedings of the Eighth International Symposium on Cyclodextrins , 1982 .

[28]  T. Ushiki,et al.  The three-dimensional organization of collagen fibrils in the human cornea and sclera. , 1991, Investigative ophthalmology & visual science.

[29]  J. Robinson,et al.  Vehicle effects on ocular drug bioavailability II: Evaluation of pilocarpine. , 1977, Journal of pharmaceutical sciences.

[30]  V. H. Lee,et al.  Topical ocular drug delivery: recent developments and future challenges. , 1986, Journal of ocular pharmacology.

[31]  B. Gumbiner,et al.  Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Schoenwald Ocular drug delivery. Pharmacokinetic considerations. , 1990, Clinical pharmacokinetics.

[33]  J. Hardy,et al.  A comparison of the effect of viscosity on the precorneal residence of solutions in rabbit and man , 1986, The Journal of pharmacy and pharmacology.

[34]  T. Maren,et al.  Ocular pharmacology of sulfonamides: the cornea as barrier and depot. , 1985, Current eye research.

[35]  N. Bodor,et al.  Oral pharmacokinetics of carbamazepine in dogs from commercial tablets and a cyclodextrin complex. , 1993, Journal of pharmaceutical sciences.

[36]  J. Robinson,et al.  (D) Routes of delivery: Case studies: (7) Ocular delivery of peptide and protein drugs , 1992 .

[37]  A. Rozier,et al.  Bioadhesion: The effect of polyacrylic acid on the ocular bioavailability of timolol , 1992 .

[38]  Frank W. Newell,et al.  Ophthalmology, principles and concepts , 1969 .

[39]  D. Whikehart,et al.  Beta-blocking agents inhibit Na+K+ATPase in cultured corneal endothelial and epithelial cells. , 1991, Journal of ocular pharmacology.

[40]  S. Choudhury,et al.  Improvement of oral bioavailability of carbamazepine by inclusion in 2-hydroxypropyl-β-cyclodextrin , 1992 .

[41]  M. Kass,et al.  Timolol and epinephrine: long-term evaluation of concurrent administration. , 1982, Archives of ophthalmology.

[42]  H. Sasaki,et al.  Ocular drug interactions involving topically applied timolol in the pigmented rabbit. , 1991, Current eye research.

[43]  J. Hanrahan,et al.  Anion channels in the apical membrane of mammalian corneal epithelium primary cultures. , 1991, Investigative ophthalmology & visual science.

[44]  Robert Gurny,et al.  Gamma scintigraphic study of precorneal drainage and assessment of miotic response in rabbits of various ophthalmic formulations containing pilocarpine , 1993 .

[45]  N. McNamara,et al.  Stromal acidosis modulates corneal swelling. , 1994, Investigative ophthalmology & visual science.

[46]  J. Robinson,et al.  Study of the mechanism of interaction of poly(ϵ-caprolactone) nanocapsules with the cornea by confocal laser scanning microscopy , 1994 .

[47]  C K Hitzenberger,et al.  Interferometric measurement of corneal thickness with micrometer precision. , 1994, American journal of ophthalmology.

[48]  J. Chang,et al.  Pharmacokinetic basis for nonadditivity of intraocular pressure lowering in timolol combinations. , 1991, Investigative ophthalmology & visual science.

[49]  A. Tønjum Permeability of horseradish peroxidase in the rabbit corneal epithelium. , 2009, Acta ophthalmologica.

[50]  J. Kelly,et al.  Relative bioavailability of pilocarpine from a novel ophthalmic delivery system and conventional eyedrop formulations. , 1989, The British journal of ophthalmology.

[51]  Joseph R. Robinson,et al.  Confocal laser scanning microscopic examination of transport pathways and barriers of some peptides across the cornea , 1990 .

[52]  R. Brown,et al.  The effect of reduced eyedrop size and eyelid closure on the therapeutic index of phenylephrine. , 1993, American journal of ophthalmology.

[53]  N. Bodor,et al.  Effect of various cyclodextrins on solution stability and dissolution rate of doxorubicin hydrochloride , 1992 .

[54]  V. H. Lee Mechanisms and facilitation of corneal drug penetration , 1990 .

[55]  A. Urtti,et al.  Sodium acetate improves the ocular/systemic absorption ratio of timolol applied ocularly in monoisopropyl PVM-MA matrices , 1991 .

[56]  J. Rae,et al.  Ion channels in ocular epithelia. , 1993, Investigative ophthalmology & visual science.

[57]  A. Urtti,et al.  Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits , 1990 .

[58]  M. F. Sugrue,et al.  The pharmacology of antiglaucoma drugs. , 1989, Pharmacology & therapeutics.

[59]  M. Tso,et al.  Intravitreal delivery of ganciclovir in rabbits by transscleral iontophoresis. , 1994, Journal of ocular pharmacology.

[60]  H. Sasaki,et al.  Intestinal permeability of ophthalmic beta-blockers for predicting ocular permeability. , 1994, Journal of pharmaceutical sciences.

[61]  A. Urtti,et al.  Disposition of ophthalmic timolol in treated and untreated rabbit eyes. A multiple and single dose study. , 1984, Experimental eye research.

[62]  J. Wolosin,et al.  Ontogeny of corneal epithelial tight junctions: stratal locale of biosynthetic activities. , 1993, Investigative ophthalmology & visual science.

[63]  J. Robinson,et al.  Lacrimal and instilled fluid dynamics in rabbit eyes. , 1973, Journal of pharmaceutical sciences.

[64]  K. Green,et al.  Influence of vehicle and anterior chamber protein concentration on cyclosporine penetration through the isolated rabbit cornea. , 1992, Current eye research.

[65]  J. Szejtli,et al.  Cyclodextrins in Pharmacy , 1993 .

[66]  Clive G. Wilson,et al.  Treatment of diseases of the eye with mucoadhesive delivery systems , 1993 .

[67]  P. Granström,et al.  Timolol-pilocarpine combined vs timolol and pilocarpine given separately. , 1989, American journal of ophthalmology.

[68]  Y. Rojanasakul,et al.  Transport mechanisms of the cornea: characterization of barrier permselectivity , 1989 .

[69]  E. Keates Evaluation of timolol maleate combination therapy in chronic open-angle glaucoma. , 1979, American journal of ophthalmology.

[70]  D. Tang-Liu,et al.  Corneal and conjunctival/scleral penetration of p-aminoclonidine, AGN 190342, and clonidine in rabbit eyes. , 1990, Current eye research.

[71]  S. S. Davis,et al.  Altered ocular absorption and disposition of sodium cromoglycate upon ion‐pair and complex coacervate formation with dodecylbenzyldimethylammonium chloride , 1981, The Journal of pharmacy and pharmacology.

[72]  J. Siliciano,et al.  Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia , 1986, The Journal of cell biology.

[73]  P. Agre,et al.  Cultured bovine corneal endothelial cells express CHIP28 water channels. , 1993, The American journal of physiology.

[74]  M. Doughty,et al.  Topographical differences in cell area at the surface of the corneal epithelium of the pigmented rabbit. , 1992, Current eye research.

[75]  A. C. Eissens,et al.  The effects of cyclodextrins on drug absorption II. In vivo observations , 1990 .

[76]  A. Urtti,et al.  Effects of epinephrine pretreatment and solution pH on ocular and systemic absorption of ocularly applied timolol in rabbits. , 1990, Journal of pharmaceutical sciences.

[77]  R. Buck,et al.  Influence of ion pairing salts on the transcorneal permeability of ionized sulfonamides. , 1992, Journal of ocular pharmacology.

[78]  T. Zimmerman,et al.  Therapeutic index of pilocarpine, carbachol, and timolol with nasolacrimal occlusion. , 1992, American journal of ophthalmology.

[79]  A. Urtti,et al.  Ophthalmic epinephrine, phenylephrine, and pilocarpine affect the systemic absorption of ocularly applied timolol. , 1989, Journal of ocular pharmacology.

[80]  F. B. Hoefle,et al.  Recent studies on the nature and function of the corneal endothelial barrier. , 1973, Experimental eye research.

[81]  M. Borgers,et al.  Beta-cyclodextrins as vehicles in eye-drop formulations: an evaluation of their effects on rabbit corneal epithelium. , 1990, Lens and eye toxicity research.

[82]  J. Szejtli Cyclodextrins in Pharmaceuticals , 1988 .

[83]  R. Schoenwald,et al.  Relationship between steroid permeability across excised rabbit cornea and octanol-water partition coefficients. , 1978, Journal of pharmaceutical sciences.

[84]  J. Moyano,et al.  Study of the dissolution characteristics of oxazepam via complexation with β-cyclodextrin , 1995 .

[85]  R. Schoenwald,et al.  Corneal Penetration Behavior of β-Blocking Agents I: Physicochemical Factors , 1983 .

[86]  P. Ellis,et al.  Effect of nasolacrimal occlusion on timolol concentrations in the aqueous humor of the human eye. , 1992, Journal of pharmaceutical sciences.

[87]  T. F. Patton,et al.  Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption , 1987 .

[88]  K. Cooper,et al.  Single potassium channels in corneal epithelium. , 1990, Investigative ophthalmology & visual science.

[89]  J. Robinson,et al.  Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. , 1979, Journal of pharmaceutical sciences.

[90]  S. Tseng,et al.  Paracellular permeability of corneal and conjunctival epithelia. , 1989, Investigative ophthalmology & visual science.

[91]  T. Nishida,et al.  The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy. , 1988, Investigative ophthalmology & visual science.

[92]  E. Stefánsson,et al.  2-hydroxypropyl-β-cyclodextrin in topical carbonic anhydrase inhibitor formulations , 1994 .

[93]  A. Rozier,et al.  Gelrite®: A novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol , 1989 .

[94]  S. Tseng,et al.  Conjunctival epithelial cells do not transdifferentiate in organotypic cultures: expression of K12 keratin is restricted to corneal epithelium. , 1994, Current eye research.

[95]  John W. Shell Ophthalmic drug delivery systems , 1984 .

[96]  V. Lee,et al.  Formulation influence on ocular and systemic absorption of topically applied atenolol in the pigmented rabbit. , 1993, Journal of ocular pharmacology.

[97]  T. Sun,et al.  In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. , 1993, Investigative ophthalmology & visual science.

[98]  R. Borchardt Assessment of transport barriers using cell and tissue culture systems , 1990 .

[99]  B. Saville,et al.  Theoretical corneal permeation model for ionizable drugs. , 1993, Journal of ocular pharmacology.

[100]  R. Silverman,et al.  Epithelial and corneal thickness measurements by high-frequency ultrasound digital signal processing. , 1994, Ophthalmology.

[101]  A. Urtti,et al.  Modification of ocular and systemic absorption of timolol from ocular inserts by a buffering agent and a vasoconstrictor , 1990 .

[102]  J. C. Keister,et al.  Limits on optimizing ocular drug delivery. , 1991, Journal of pharmaceutical sciences.

[103]  D. Shi,et al.  Is It Worthwhile to Add Dipivefrin HCl 0.1 % to Topical β1-, β2-blocker Theraphy?+ , 1989 .

[104]  R. Stratford,et al.  Metabolic and permeation barriers to the ocular absorption of topically applied enkephalins in albino rabbits. , 1986, Journal of ocular pharmacology.

[105]  T. Nadai,et al.  Effect of the interaction of drug-beta-cyclodextrin complex with bile salts on the drug absorption from rat small intestinal lumen. , 1989, Chemical & pharmaceutical bulletin.

[106]  Robert Gurny,et al.  Design and evaluation of controlled release systems for the eye , 1987 .

[107]  U. Kompella,et al.  Systemic absorption pathways of topically applied beta adrenergic antagonists in the pigmented rabbit. , 1993, Experimental eye research.

[108]  D. Maurice Electrical potential and ion transport across the conjunctiva. , 1973, Experimental eye research.

[109]  T. Loftsson,et al.  The effect of cyclodextrins on the solubility and stability of medroxyprogesterone acetate and megestrol acetate in aqueous solution , 1993 .

[110]  Y. Rojanasakul,et al.  The cytoskeleton of the cornea and its role in tight junction permeability , 1991 .

[111]  B. S. Winkler,et al.  Relationship between fluid transport and in situ inhibition of Na(+)-K+ adenosine triphosphatase in corneal endothelium. , 1994, Investigative ophthalmology & visual science.

[112]  T. Nakai,et al.  Evaluation of permeability enhancement of hydrophilic compounds and macromolecular compounds by bile salts through rabbit corneas in‐vitro , 1987, The Journal of pharmacy and pharmacology.

[113]  C. M. Lederer,et al.  Drop size of commercial glaucoma medications. , 1986, American journal of ophthalmology.

[114]  A. Ludwig,et al.  The evaluation of viscous ophthalmic vehicles by slit lamp fluorophotometry in humans , 1989 .

[115]  V. H. Lee,et al.  Aminopeptidase activity in homogenates of various absorptive mucosae m the albino rabbit: implications in peptide delivery , 1986 .

[116]  R. W. Wood,et al.  Effects of calcium chelating agents on corneal permeability. , 1985, Investigative ophthalmology & visual science.

[117]  Thorsteinn Loftsson,et al.  The effect of hydroxypropyl methylcellulose on the release of dexamethasone from aqueous 2-hydroxypropyl-β-cyclodextrin formulations , 1994 .

[118]  M. D. McCartney,et al.  Rabbit corneal epithelial wound repair: tight junction reformation. , 1992, Current eye research.

[119]  T. F. Patton,et al.  Age-related differences in ophthalmic drug disposition III. Corneal permeability of pilocarpine in rabbits , 1983 .

[120]  J. Szejtli Cyclodextrins: Properties and Applications , 1990 .

[121]  A. Martínez-Palomo,et al.  Structure of tight junctions in epithelia with different permeability. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[122]  U. Kompella,et al.  Active chloride transport in the pigmented rabbit conjunctiva. , 1993, Current eye research.

[123]  R. Stone,et al.  Safety and effectiveness of concomitant administration of dipivefrin and timolol maleate. , 1981, American journal of ophthalmology.

[124]  A. Urtti Delivery of antiglaucoma drugs: ocular vs systemic absorption. , 1994, Journal of ocular pharmacology.

[125]  A. Urtti,et al.  Systemic absorption of ocular pilocarpine is modified by polymer matrices , 1985 .

[126]  M. Itoh,et al.  Occludin: a novel integral membrane protein localizing at tight junctions , 1993, The Journal of cell biology.

[127]  Benjamin Geiger,et al.  Cingulin, a new peripheral component of tight junctions , 1988, Nature.

[128]  H. Edelhauser,et al.  The developing corneal endothelium: correlation of morphology, hydration and Na/K ATPase pump site density. , 1991, Current eye research.

[129]  C. Crosson,et al.  Beta-cyclodextrins enhance bioavailability of pilocarpine. , 1993, Current eye research.

[130]  R. Huupponen,et al.  Effects of eyelid closure and nasolacrimal duct occlusion on the systemic absorption of ocular timolol in human subjects. , 1986, Journal of ocular pharmacology.

[131]  K. Uekama,et al.  Improvement of dissolution and absorption characteristics of phenytoin by a water-soluble β-cyclodextrin-epichlorohydrin polymer , 1985 .

[132]  A. Urtti,et al.  Improved ocular: systemic absorption ratio of timolol by viscous vehicle and phenylephrine. , 1990, Investigative ophthalmology & visual science.

[133]  B. Müller,et al.  In vitro corneal permeability of diclofenac sodium in formulations containing cyclodextrins compared to the commercial product voltaren ophtha. , 1994, Journal of pharmaceutical sciences.

[134]  Jos H. Beijnen,et al.  Cyclodextrins in the Pharmaceutical Field , 1991 .

[135]  Y. Rojanasakul,et al.  The effect of drug charge type and charge density on corneal transport , 1992 .

[136]  T. F. Patton,et al.  Importance of the noncorneal absorption route in topical ophthalmic drug delivery. , 1985, Investigative ophthalmology & visual science.

[137]  C. Chiang,et al.  Corneal and scleral penetration studies of 6-hydroxyethoxy-2-benzothiazole sulfonamide: a topical carbonic anhydrase inhibitor. , 1990, Journal of ocular pharmacology.

[138]  G. Visor Drug design strategies for ocular therapeutics , 1994 .

[139]  B. Gumbiner,et al.  Structure, biochemistry, and assembly of epithelial tight junctions. , 1987, The American journal of physiology.

[140]  V. H. Lee,et al.  Prodrugs for improved ocular drug delivery , 1989 .

[141]  Nicholas Bodor,et al.  Novel ‘soft’ β-blockers as potential safe antiglaucoma agents , 1988 .

[142]  I. Oh,et al.  Effect of 2-hydroxypropyl-β-cyclodextrin on the stability of prostaglandin E2 in solution , 1994 .