Direct visualization of non-human primate subcortical nuclei with contrast-enhanced high field MRI

Subcortical nuclei are increasingly targeted for deep brain stimulation (DBS) and for gene transfer to treat neurological and psychiatric disorders. For a successful outcome in patients, it is critical to place DBS electrodes or infuse viral vectors accurately within targeted nuclei. However current MRI approaches are still limited to localize brainstem and basal ganglia nuclei accurately. By combining ultra-high resolution structural MRI and contrast-enhanced MRI using iron oxide nanoparticles at high field (3T and 7T), we could precisely locate the subcortical nuclei, in particular the subthalamic nucleus in macaques, and validate this location by intracranial electrophysiological mapping. The present data pave the way to a clinical application.

[1]  Luke Bloy,et al.  A method for localizing microelectrode trajectories in the macaque brain using MRI , 2009, Journal of Neuroscience Methods.

[2]  M. Corbetta,et al.  Topographic organization of macaque area LIP , 2010, Proceedings of the National Academy of Sciences.

[3]  G Le Duc,et al.  Use of T2‐weighted susceptibility contrast MRI for mapping the blood volume in the glioma‐bearing rat brain , 1999, Magnetic resonance in medicine.

[4]  B. Rosen,et al.  MR Contrast Due to Microscopically Heterogeneous Magnetic Susceptibility: Numerical Simulations and Applications to Cerebral Physiology , 1991, Magnetic resonance in medicine.

[5]  Essa Yacoub,et al.  In vivo micro-MRI of intracortical neurovasculature , 2006, NeuroImage.

[6]  B. Rosen,et al.  Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects , 1988, Magnetic resonance in medicine.

[7]  Jeff W. M. Bulte,et al.  Molecular and Cellular MR Imaging , 2007 .

[8]  Paula M Jacobs,et al.  Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? , 2009, Kidney international.

[9]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[10]  Sophie Gaillard,et al.  Safety and Tolerability of Ultrasmall Superparamagnetic Iron Oxide Contrast Agent: Comprehensive Analysis of a Clinical Development Program , 2009, Investigative radiology.

[11]  P. Sourander,et al.  THE NON‐HAEMIN IRON IN THE CEREBRAL CORTEX IN ALZHEIMER'S DISEASE , 1960, Journal of neurochemistry.

[12]  Aviva Abosch,et al.  Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. , 2002, Journal of neurosurgery.

[13]  P J Kelly,et al.  Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. , 2000, Neurosurgery.

[14]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[15]  S. Jarman,et al.  Topographic brain chemistry: R.L. FRIEDE. Academic Press, New York, 1966. 543 pp. $22 , 1967 .

[16]  Didier Dormont,et al.  Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. , 2004, AJNR. American journal of neuroradiology.

[17]  Jérôme Yelnik,et al.  A histological atlas of the macaque (Macaca, mulatta) substantia nigra in ventricular coordinates , 1985, Brain Research Bulletin.

[18]  Margaret S. Livingstone,et al.  Noninvasive Functional Mri in Alert Monkeys , 2022 .

[19]  M R DeLong,et al.  Excitotoxic acid lesions of the primate subthalamic nucleus result in transient dyskinesias of the contralateral limbs. , 1992, Journal of neurophysiology.

[20]  P. Burger,et al.  MR detection of brain iron. , 1993, AJNR. American journal of neuroradiology.

[21]  H. Bergman,et al.  The primate subthalamic nucleus. I. Functional properties in intact animals. , 1994, Journal of neurophysiology.

[22]  Anders M. Dale,et al.  Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla , 2002, NeuroImage.

[23]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[24]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[25]  R M Lehman,et al.  Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. , 2001, Neurosurgery.

[26]  A. Lozano,et al.  Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. , 2010, Journal of neurosurgery.

[27]  Jason T. Moyer,et al.  Conventional MRI Is Inadequate to Delineate the Relationship between the Red Nucleus and Subthalamic Nucleus in Parkinson’s Disease , 2006, Stereotactic and Functional Neurosurgery.

[28]  M. D. Crutcher,et al.  Primate globus pallidus and subthalamic nucleus: functional organization. , 1985, Journal of neurophysiology.

[29]  M. D. Crutcher,et al.  Relations between movement and single cell discharge in the substantia nigra of the behaving monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[31]  G. Percheron,et al.  Topographical and cytological localization of iron in rat and monkey brains , 1981, Brain Research.

[32]  Sterling C. Johnson,et al.  A population-average MRI-based atlas collection of the rhesus macaque , 2009, NeuroImage.

[33]  Richard S. Frackowiak,et al.  Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps , 2009, NeuroImage.

[34]  Y. Agid,et al.  Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior , 2007, Proceedings of the National Academy of Sciences.

[35]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[36]  Keyoumars Ashkan,et al.  Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus , 2010, European Radiology.

[37]  A. Benabid,et al.  Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. , 1998, The New England journal of medicine.

[38]  R. Ordidge,et al.  Assessment of relative brain iron concentrations using T2‐weighted and T2*‐weighted MRI at 3 Tesla , 1994, Magnetic resonance in medicine.

[39]  Michael Petrides,et al.  Frameless stereotaxy in the nonhuman primate , 2004, NeuroImage.

[40]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[41]  K V Slavin,et al.  Direct visualization of the human subthalamic nucleus with 3T MR imaging. , 2006, AJNR. American journal of neuroradiology.

[42]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[43]  A. Toga,et al.  The Rhesus Monkey Brain in Stereotaxic Coordinates , 1999 .

[44]  V A Coenen,et al.  Localization of the Subthalamic Nucleus: Optimization with Susceptibility-Weighted Phase MR Imaging , 2009, American Journal of Neuroradiology.

[45]  S. Ellias,et al.  Assessment of the variability in the anatomical position and size of the subthalamic nucleus among patients with advanced Parkinson’s disease using magnetic resonance imaging , 2010, Acta Neurochirurgica.

[46]  Shailendra Kapoor,et al.  Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. , 2009, The New England journal of medicine.

[47]  M. Delong,et al.  Putamen: Activity of Single Units during Slow and Rapid Arm Movements , 1973, Science.

[48]  G Stranjalis,et al.  Continuous assessment of relative cerebral blood volume in transient ischemia using steady state susceptibility‐contrast MRI , 1996, Magnetic resonance in medicine.

[49]  Emmanuelle Canet-Soulas,et al.  Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. , 2009, Radiology.

[50]  Russell E. Jacobs,et al.  Quantitative pharmacologic MRI: Mapping the cerebral blood volume response to cocaine in dopamine transporter knockout mice , 2011, NeuroImage.

[51]  E. J. Tehovnik,et al.  Mapping Cortical Activity Elicited with Electrical Microstimulation Using fMRI in the Macaque , 2005, Neuron.

[52]  Isabelle Raynal,et al.  Superparamagnetic Contrast Agents , 2007 .

[53]  P. Dechent,et al.  Improved Visibility of the Subthalamic Nucleus on High-Resolution Stereotactic MR Imaging by Added Susceptibility (T2*) Contrast Using Multiple Gradient Echoes , 2007, American Journal of Neuroradiology.

[54]  D. Louis Collins,et al.  MNI monkey space , 2009, Neuroscience Research.

[55]  E. Wu,et al.  High‐resolution in vivo CBV mapping with MRI in wild‐type mice , 2003, Magnetic resonance in medicine.

[56]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[57]  Abdelhamid Benazzouz,et al.  Pretargeting for the Implantation of Stimulation Electrodes into the Subthalamic Nucleus: A Comparative Study of Magnetic Resonance Imaging and Ventriculography , 2006, Neurosurgery.

[58]  David Eidelberg,et al.  Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial , 2007, The Lancet.

[59]  M. Inase,et al.  Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[61]  Chantal François,et al.  A stereotaxic atlas of the basal ganglia in Macaques , 1996, Brain Research Bulletin.