Structure-based systems biology for analyzing off-target binding.

[1]  M. Girolami,et al.  Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species , 2010, Science Signaling.

[2]  Xavier Barril,et al.  Ensemble Docking from Homology Models. , 2010, Journal of chemical theory and computation.

[3]  Bin Chen,et al.  Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis , 2009, J. Chem. Inf. Model..

[4]  Stefan Wetzel,et al.  Bioactivity-guided mapping and navigation of chemical space. , 2009, Nature chemical biology.

[5]  K. Dill,et al.  Predicting absolute ligand binding free energies to a simple model site. , 2007, Journal of molecular biology.

[6]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[7]  K. Sharp,et al.  On the calculation of absolute macromolecular binding free energies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Alexander D. MacKerell,et al.  Computational evaluation of protein-small molecule binding. , 2009, Current opinion in structural biology.

[9]  R. Jackson,et al.  Homology-modelling protein-ligand interactions: allowing for ligand-induced conformational change. , 2010, Journal of molecular biology.

[10]  Régis Pomès,et al.  Calculation of absolute protein-ligand binding free energy using distributed replica sampling. , 2008, The Journal of chemical physics.

[11]  Y.Z. Chen,et al.  Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule , 2001, Proteins.

[12]  Robert B. Russell,et al.  SuperTarget and Matador: resources for exploring drug-target relationships , 2007, Nucleic Acids Res..

[13]  Philip E. Bourne,et al.  Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models , 2005, PLoS Comput. Biol..

[14]  T. Scior,et al.  Application of drug repositioning strategy to TOFISOPAM. , 2008, Current medicinal chemistry.

[15]  Didier Rognan,et al.  How to Measure the Similarity Between Protein Ligand-Binding Sites? , 2008 .

[16]  Graham M. West,et al.  Quantitative proteomics approach for identifying protein–drug interactions in complex mixtures using protein stability measurements , 2010, Proceedings of the National Academy of Sciences.

[17]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[18]  D. Diller,et al.  Kinases, homology models, and high throughput docking. , 2003, Journal of medicinal chemistry.

[19]  Jie Liang,et al.  Predicting Protein Function and Binding Profile via Matching of Local Evolutionary and Geometric Surface Patterns , 2009 .

[20]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[21]  T. Klabunde,et al.  Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. , 2005, Journal of medicinal chemistry.

[22]  Ruben Abagyan,et al.  Nuclear hormone receptor targeted virtual screening. , 2003, Journal of medicinal chemistry.

[23]  K. Shokat,et al.  Targeting the cancer kinome through polypharmacology , 2010, Nature Reviews Cancer.

[24]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[25]  B. Druker,et al.  Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. , 2000, The Journal of clinical investigation.

[26]  Daniel L Baker,et al.  Virtual screening approaches for the identification of non-lipid autotaxin inhibitors. , 2008, Bioorganic & medicinal chemistry.

[27]  Rommie E. Amaro,et al.  An improved relaxed complex scheme for receptor flexibility in computer-aided drug design , 2008, J. Comput. Aided Mol. Des..

[28]  J. Skolnick,et al.  A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation , 2008, Proceedings of the National Academy of Sciences.

[29]  E. Kunkel Systems biology in drug discovery , 2004, Nature Biotechnology.

[30]  Markus Fischer,et al.  Structural relationships among proteins with different global topologies and their implications for function annotation strategies , 2009, Proceedings of the National Academy of Sciences.

[31]  Z. Xiang,et al.  Advances in homology protein structure modeling. , 2006, Current protein & peptide science.

[32]  M. Cyert,et al.  Cracking the Phosphatase Code: Docking Interactions Determine Substrate Specificity , 2009, Science Signaling.

[33]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[34]  Eytan Ruppin,et al.  Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model , 2010, Bioinform..

[35]  Stefan Wetzel,et al.  Interactive exploration of chemical space with Scaffold Hunter. , 2009, Nature chemical biology.

[36]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[37]  Philip E. Bourne,et al.  A Multidimensional Strategy to Detect Polypharmacological Targets in the Absence of Structural and Sequence Homology , 2010, PLoS Comput. Biol..

[38]  T. Bishop,et al.  Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands. , 2001, Journal of medicinal chemistry.

[39]  D. Lauffenburger,et al.  Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction , 2009, Molecular systems biology.

[40]  Didier Rognan,et al.  Protein‐based virtual screening of chemical databases. II. Are homology models of g‐protein coupled receptors suitable targets? , 2002, Proteins.

[41]  R. Sharan,et al.  Toward accurate reconstruction of functional protein networks , 2009, Molecular systems biology.

[42]  Keiji Tanaka,et al.  Binding mode of ecdysone agonists to the receptor: comparative modeling and docking studies , 2003, Journal of molecular modeling.

[43]  B. Stockwell,et al.  Multicomponent therapeutics for networked systems , 2005, Nature Reviews Drug Discovery.

[44]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[45]  Jie Liang,et al.  Inferring functional relationships of proteins from local sequence and spatial surface patterns. , 2003, Journal of molecular biology.

[46]  M. Gilson,et al.  Calculation of protein-ligand binding affinities. , 2007, Annual review of biophysics and biomolecular structure.

[47]  V. Nizet,et al.  A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. , 2008, Science.

[48]  K. Fidelis,et al.  Generalized modeling of enzyme–ligand interactions using proteochemometrics and local protein substructures , 2006, Proteins.

[49]  R. Solé,et al.  Data completeness—the Achilles heel of drug-target networks , 2008, Nature Biotechnology.

[50]  Anna Vulpetti,et al.  Predicting Polypharmacology by Binding Site Similarity: From Kinases to the Protein Universe , 2010, J. Chem. Inf. Model..

[51]  John P. Overington,et al.  Genomic-scale prioritization of drug targets: the TDR Targets database , 2008, Nature Reviews Drug Discovery.

[52]  G. Müller,et al.  Medicinal chemistry of target family-directed masterkeys. , 2003, Drug discovery today.

[53]  J. Andrew McCammon,et al.  Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei , 2008, Proceedings of the National Academy of Sciences.

[54]  J. Whisstock,et al.  Prediction of protein function from protein sequence and structure , 2003, Quarterly Reviews of Biophysics.

[55]  Kevin Y. Yip,et al.  Extensive In Vivo Metabolite-Protein Interactions Revealed by Large-Scale Systematic Analyses , 2010, Cell.

[56]  A. Barabasi,et al.  Blueprint for antimicrobial hit discovery targeting metabolic networks , 2010, Proceedings of the National Academy of Sciences.

[57]  Alla Karnovsky,et al.  A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore , 2009, Proceedings of the National Academy of Sciences.

[58]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[59]  Ines Thiele,et al.  Three-Dimensional Structural View of the Central Metabolic Network of Thermotoga maritima , 2009, Science.

[60]  Jürgen Bajorath,et al.  Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. , 2007, Drug discovery today.

[61]  Michal Brylinski,et al.  FINDSITELHM: A Threading-Based Approach to Ligand Homology Modeling , 2009, PLoS Comput. Biol..

[62]  B. Roux,et al.  Calculation of absolute protein-ligand binding free energy from computer simulations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Michael K. Gilson,et al.  Screening Drug-Like Compounds by Docking to Homology Models: A Systematic Study , 2006, J. Chem. Inf. Model..

[64]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[65]  Anna K. Schrey,et al.  Capture compound mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs. , 2010, Toxicological sciences : an official journal of the Society of Toxicology.

[66]  M. Carroll,et al.  CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. , 1997, Blood.

[67]  Adrian H Elcock,et al.  Progress toward virtual screening for drug side effects , 2002, Proteins.

[68]  Philip E. Bourne,et al.  The Mycobacterium tuberculosis Drugome and Its Polypharmacological Implications , 2010, PLoS Comput. Biol..

[69]  G. Klebe,et al.  Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. , 2004, Journal of medicinal chemistry.

[70]  A. Hopkins Network pharmacology , 2007, Nature Biotechnology.

[71]  K. Dill,et al.  Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". , 2009, Structure.

[72]  G. V. Paolini,et al.  Global mapping of pharmacological space , 2006, Nature Biotechnology.

[73]  E. Bradley,et al.  Performance of 3D-database molecular docking studies into homology models. , 2004, Journal of medicinal chemistry.

[74]  A. Schuffenhauer,et al.  Charting biologically relevant chemical space: a structural classification of natural products (SCONP). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Zhaohui S. Qin,et al.  A Global Protein Kinase and Phosphatase Interaction Network in Yeast , 2010, Science.

[76]  D. Licatalosi,et al.  Integrative Modeling Defines the Nova Splicing-Regulatory Network and Its Combinatorial Controls , 2010, Science.

[77]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[78]  A. Fliri,et al.  Biospectra analysis: model proteome characterizations for linking molecular structure and biological response. , 2005, Journal of medicinal chemistry.

[79]  P. Ridker,et al.  Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms , 2005, Nature Reviews Drug Discovery.

[80]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[81]  Gary An,et al.  Closing the Scientific Loop: Bridging Correlation and Causality in the Petaflop Age , 2010, Science Translational Medicine.

[82]  Lin He,et al.  Harvesting Candidate Genes Responsible for Serious Adverse Drug Reactions from a Chemical-Protein Interactome , 2009, PLoS Comput. Biol..

[83]  Sebastian Radestock,et al.  Homology Model-Based Virtual Screening for GPCR Ligands Using Docking and Target-Biased Scoring , 2008, J. Chem. Inf. Model..

[84]  R Abagyan,et al.  Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs , 2007, Proceedings of the National Academy of Sciences.

[85]  Mehmet Koyutürk,et al.  An Integrative -omics Approach to Identify Functional Sub-Networks in Human Colorectal Cancer , 2010, PLoS Comput. Biol..

[86]  Philip E. Bourne,et al.  Drug Discovery Using Chemical Systems Biology: Identification of the Protein-Ligand Binding Network To Explain the Side Effects of CETP Inhibitors , 2009, PLoS Comput. Biol..

[87]  M. Belvin,et al.  RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth , 2010, Nature.

[88]  P. Clemons,et al.  Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint. , 2007, Combinatorial chemistry & high throughput screening.

[89]  Lei Xie,et al.  Detecting evolutionary relationships across existing fold space, using sequence order-independent profile–profile alignments , 2008, Proceedings of the National Academy of Sciences.

[90]  P. Sorger,et al.  Systems biology and combination therapy in the quest for clinical efficacy , 2006, Nature chemical biology.

[91]  Philip E. Bourne,et al.  Drug Discovery Using Chemical Systems Biology: Repositioning the Safe Medicine Comtan to Treat Multi-Drug and Extensively Drug Resistant Tuberculosis , 2009, PLoS Comput. Biol..

[92]  B. Shoichet,et al.  Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. , 2003, Journal of medicinal chemistry.

[93]  Philip E. Bourne,et al.  Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model , 2010, PLoS Comput. Biol..

[94]  Jian Wang,et al.  In Silico Elucidation of the Molecular Mechanism Defining the Adverse Effect of Selective Estrogen Receptor Modulators , 2007, PLoS Comput. Biol..

[95]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[96]  Angelo D. Favia,et al.  Protein promiscuity and its implications for biotechnology , 2009, Nature Biotechnology.

[97]  R. Nussinov,et al.  How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding. , 2007, Journal of molecular biology.

[98]  K. Rasmussen Creating more effective antidepressants: clues from the clinic. , 2006, Drug discovery today.

[99]  S. Pongor,et al.  Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  Corey Nislow,et al.  Combination chemical genetics. , 2008, Nature chemical biology.

[101]  P. Kollman,et al.  Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. , 2000, Accounts of chemical research.

[102]  H. Kitano A robustness-based approach to systems-oriented drug design , 2007, Nature Reviews Drug Discovery.

[103]  Martin Zacharias,et al.  In silico prediction of binding sites on proteins. , 2010, Current medicinal chemistry.

[104]  Edgar Jacoby,et al.  Evaluation of the utility of homology models in high throughput docking , 2007, Journal of molecular modeling.

[105]  Alasdair T. R. Laurie,et al.  Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. , 2006, Current protein & peptide science.

[106]  J. Lehár,et al.  Multi-target therapeutics: when the whole is greater than the sum of the parts. , 2007, Drug discovery today.

[107]  Jordi Mestres,et al.  Computational chemogenomics approaches to systematic knowledge-based drug discovery. , 2004, Current opinion in drug discovery & development.

[108]  Xiaohua Ma,et al.  Mechanisms of drug combinations: interaction and network perspectives , 2009, Nature Reviews Drug Discovery.

[109]  N. Chandra,et al.  Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance , 2008, BMC Microbiology.

[110]  Russell L. Marsden,et al.  Progress of structural genomics initiatives: an analysis of solved target structures. , 2005, Journal of molecular biology.

[111]  Bin Fang,et al.  A chemical and phosphoproteomic characterization of dasatinib action in lung cancer , 2010, Nature chemical biology.

[112]  Chao Zhang,et al.  RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF , 2010, Nature.

[113]  Michael A. White,et al.  Use of Data-Biased Random Walks on Graphs for the Retrieval of Context-Specific Networks from Genomic Data , 2010, PLoS Comput. Biol..

[114]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[115]  U. Alon,et al.  The incoherent feedforward loop can provide fold-change detection in gene regulation. , 2009, Molecular cell.

[116]  T. Henzinger,et al.  Executable cell biology , 2007, Nature Biotechnology.

[117]  J. Reis-Filho,et al.  Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF , 2010, Cell.

[118]  Raquel Norel,et al.  Protein interface conservation across structure space , 2010, Proceedings of the National Academy of Sciences.

[119]  F. Cohen,et al.  Co-evolution of proteins with their interaction partners. , 2000, Journal of molecular biology.

[120]  Justin Lamb,et al.  The Connectivity Map: a new tool for biomedical research , 2007, Nature Reviews Cancer.

[121]  J. Lehár,et al.  High-order combination effects and biological robustness , 2008, Molecular systems biology.

[122]  Rommie E. Amaro,et al.  Ensemble-Based Virtual Screening Reveals Potential Novel Antiviral Compounds for Avian Influenza Neuraminidase , 2008, Journal of medicinal chemistry.

[123]  Lea Goentoro,et al.  Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. , 2009, Molecular cell.

[124]  P. Bork,et al.  Drug Target Identification Using Side-Effect Similarity , 2008, Science.

[125]  Gerhard Klebe,et al.  An old target revisited: two new privileged skeletons and an unexpected binding mode for HIV-protease inhibitors. , 2005, Angewandte Chemie.

[126]  Hiroyuki Kurata,et al.  Genetic modification of flux for flux prediction of mutants , 2009, Bioinform..

[127]  Michal Brylinski,et al.  Q‐DockLHM: Low‐resolution refinement for ligand comparative modeling , 2009, J. Comput. Chem..

[128]  Bryan L. Roth,et al.  Finding New Tricks For Old Drugs: An Efficient Route For Public-Sector Drug Discovery , 2005, Nature Reviews Drug Discovery.

[129]  Philip E. Bourne,et al.  Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry , 2006, Proceedings of the National Academy of Sciences.

[130]  Gerhard Klebe,et al.  Molecular Docking Screens Using Comparative Models of Proteins , 2009, J. Chem. Inf. Model..

[131]  G. Parmigiani,et al.  Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses , 2008, Science.

[132]  Herbert Waldmann,et al.  Protein Structure Similarity as Guiding Principle for Combinatorial Library Design , 2003, Biological chemistry.

[133]  David Warde-Farley,et al.  Dynamic modularity in protein interaction networks predicts breast cancer outcome , 2009, Nature Biotechnology.

[134]  Stéphanie Pérot,et al.  Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. , 2010, Drug discovery today.

[135]  Qing Zhang,et al.  The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema , 2004, Nucleic Acids Res..

[136]  Mindy I. Davis,et al.  A quantitative analysis of kinase inhibitor selectivity , 2008, Nature Biotechnology.

[137]  Ying Sun,et al.  A nonsynonymous SNP in human cytosolic sialidase in a small Asian population results in reduced enzyme activity: potential link with severe adverse reactions to oseltamivir , 2007, Cell Research.

[138]  Keshava Rajagopal,et al.  Teaching old receptors new tricks: biasing seven-transmembrane receptors , 2010, Nature Reviews Drug Discovery.

[139]  Jun Wang,et al.  Protein and small molecule microarrays: powerful tools for high-throughput proteomics. , 2006, Molecular bioSystems.

[140]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[141]  Mehmet Koyutürk Algorithmic and analytical methods in network biology , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[142]  A. Singleton,et al.  Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia , 2008, Science.

[143]  Steven A Carr,et al.  Identifying the proteins to which small-molecule probes and drugs bind in cells , 2009, Proceedings of the National Academy of Sciences.

[144]  M. Girolami,et al.  Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species , 2010, Science Signaling.

[145]  Adrian H Elcock,et al.  Structure selection for protein kinase docking and virtual screening: homology models or crystal structures? , 2006, Current protein & peptide science.

[146]  Solomon Nwaka,et al.  Innovative lead discovery strategies for tropical diseases , 2006, Nature Reviews Drug Discovery.

[147]  Daniel E. Newburger,et al.  Diversity and Complexity in DNA Recognition by Transcription Factors , 2009, Science.

[148]  J. Skolnick,et al.  Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach. , 2010, Molecular pharmaceutics.

[149]  Bin Chen,et al.  Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data , 2010, BMC Bioinformatics.

[150]  G. Schneider,et al.  Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation , 2009, Proceedings of the National Academy of Sciences.

[151]  Janet M Thornton,et al.  Protein function prediction using local 3D templates. , 2005, Journal of molecular biology.

[152]  Yi Wang,et al.  In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction. , 2006, Toxicology letters.

[153]  Jonathan C. Horton,et al.  What you see ... , 2001, Nature.

[154]  James E Ferrell,et al.  Signaling motifs and Weber's law. , 2009, Molecular cell.