Parameterizing N-Holed Tori

[1]  W. Goldman,et al.  Complete Flat Affine and Lorentzian Manifolds , 2003 .

[2]  C. Grimm Simple manifolds for surface modeling and parameterization , 2002, Proceedings SMI. Shape Modeling International 2002.

[3]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[4]  Josep Cotrina Navau,et al.  Modeling surfaces from meshes of arbitrary topology , 2000, Comput. Aided Geom. Des..

[5]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[6]  Alyn P. Rockwood,et al.  Interactive Design of Smooth Genus n Objects using Multiperiodic Functions and Applications , 1999, Int. J. Shape Model..

[7]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[8]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[9]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[10]  Jörg Peters,et al.  Curvature continuous spline surfaces over irregular meshes , 1996, Comput. Aided Geom. Des..

[11]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[12]  Richard H. Bartels,et al.  Constraint-based curve manipulation , 1993, IEEE Computer Graphics and Applications.

[13]  Alyn P. Rockwood,et al.  Multiperiodic functions for surface design , 1993, Comput. Aided Geom. Des..

[14]  Michael A. Lachance,et al.  An introduction to splines for use in computer graphics and geometric modeling , 1990 .

[15]  Tony DeRose,et al.  A multisided generalization of Bézier surfaces , 1989, TOGS.

[16]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[17]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[18]  Jean-Pierre Serre A Course in Arithmetic , 1973 .