Joint criterion for factor identification and parameter estimation

One goal in simulation experimentation is to identify which input parameters most significantly influence the mean of simulation output. Another goal is to obtain good parameter estimates for a response model that quantifies how the mean output depends on influential input parameters. The majority of experimental design techniques focus on either one goal or the other. This paper uses a design criterion for follow-up experiments that jointly identifies the important parameters and reduces the variance of parameter estimates. The criterion is entropy-based; and is applied to a critical care facility simulation.

[1]  Jack P. C. Kleijnen,et al.  Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models , 1997 .

[2]  M. Degroot Uncertainty, Information, and Sequential Experiments , 1962 .

[3]  David M. Borth,et al.  A Total Entropy Criterion for the Dual Problem of Model Discrimination and Parameter Estimation , 1975 .

[4]  Russell R. Barton,et al.  Simulation metamodels , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[5]  M. E. Johnson,et al.  Some Guidelines for Constructing Exact D-Optimal Designs on Convex Design Spaces , 1983 .

[6]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[7]  I. Verdinelli,et al.  A note on Bayes designs for inference using a hierarchical linear model , 1980 .

[8]  Lee W. Schruben,et al.  Simulation Factor Screening Using Harmonic Analysis , 1993 .

[9]  Peter D. H. Hill,et al.  A Review of Experimental Design Procedures for Regression Model Discrimination , 1978 .

[10]  Lee W. Schruben,et al.  Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments , 1978 .

[11]  J. York,et al.  Bayesian Graphical Models for Discrete Data , 1995 .

[12]  Susan M. Sanchez,et al.  A robust design tutorial , 1994, Proceedings of Winter Simulation Conference.

[13]  J. Bernardo Expected Information as Expected Utility , 1979 .

[14]  Lee W. Schruben,et al.  Driving Frequency Selection for Frequency Domain Simulation Experiments , 1991, Oper. Res..

[15]  W. J. Hill,et al.  A Joint Design Criterion for the Dual Problem of Model Discrimination and Parameter Estimation , 1968 .

[16]  Szu Hui Ng Sensitivity and uncertainty analysis of complex simulation models. , 2001 .

[17]  William J. Hill,et al.  A Note on Designs for Model Discrimination: Variance Unknown Case , 1969 .

[18]  William J. Hill,et al.  Discrimination Among Mechanistic Models , 1967 .

[19]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..

[20]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[21]  George E. P. Box,et al.  Follow-up designs to resolve confounding in multifactor experiments , 1996 .

[22]  R. Cheng,et al.  Sensitivity of computer simulation experiments to errors in input data , 1997 .

[23]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .