A Differential Method Which Uses Local Heating Rates to Evaluate Non-isothermal Kinetic Parameters

[1]  Thomas B. Bahder,et al.  Mathematica for scientists and engineers , 1994 .

[2]  E. Segal,et al.  The deviation of the true heating rate with respect to the programmed one , 1993 .

[3]  E. Segal,et al.  Iterative integral method to evaluate the classical non-isothermal kinetic parameters from a single curve obtained at constant heating rate using integration over small intervals of variables and the least-squares method , 1993 .

[4]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[5]  Philip Boyland Guide to standard Mathematica packages , 1991 .

[6]  Glen McPherson,et al.  Statistics in Scientific Investigation: Its Basis, Application, and Interpretation , 1990 .

[7]  E. Segal,et al.  Is classical non-isothermal kinetics with constant heating rate actually non-isothermal kinetics with quasi-constant heating rate? , 1990 .

[8]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[9]  S. Vyazovkin,et al.  Some aspects of mathematical statistics as applied to nonisothermal kinetics , 1987 .

[10]  S. Vyazovkin,et al.  Some aspects of mathematical statistics as applied to non-isothermal kinetics , 1986 .

[11]  S. Vyazovkin,et al.  Some aspects of mathematical statistics as applied to nonisothermal kinetics , 1985 .

[12]  S. Boy,et al.  Determination of kinetic parameters from TG curves by non-linear optimization , 1981 .

[13]  V. Swaminathan,et al.  A random search technique for finding the mechanism of solid state reactions from thermogravimetric data , 1981 .

[14]  David T.Y. Chen,et al.  A testing of some dynamic kinetic equations , 1981 .

[15]  D. Dollimore,et al.  The use of the rising temperature technique to establish kinetic parameters for solid-state decompositions using a vacuum microbalance , 1978 .

[16]  David T. Y. Chen,et al.  Evaluation of kinetic parameters from thermogravimetri traces: Part II. Thermal dehydroxylation of Mg(OH)2 , 1977 .

[17]  David T. Y. Chen,et al.  Evaluation of kinetic parameters from thermogravimetric curves: Part I. Combined numerical method , 1977 .

[18]  J. Sharp,et al.  Kinetic analysis of thermogravimetric data , 1969 .

[19]  G. H. Golden,et al.  Thermophysical properties of sodium , 1967 .

[20]  E. H. Lloyd,et al.  Statistics for Scientists and Engineers. , 1966 .