A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations

Abstract In this paper, a linearly implicit conservative difference scheme for the coupled nonlinear Schrodinger equations with space fractional derivative is proposed. This scheme conserves the mass and energy in the discrete level and only needs to solve a linear system at each step. The existence and uniqueness of the difference solution are proved. The stability and convergence of the scheme are discussed, and it is shown to be convergent of order O ( τ 2 + h 2 ) in the discrete l 2 norm with the time step τ and mesh size h . When the fractional order is two, all those results are in accord with the difference scheme proposed for the classical non-fractional coupled nonlinear Schrodinger equations. Some numerical examples are also reported.

[1]  Jie Xin,et al.  The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition , 2011, Comput. Math. Appl..

[2]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[3]  Jie Xin,et al.  Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation , 2008, Appl. Math. Comput..

[4]  Ricardo Carretero-González,et al.  A Modulus-Squared Dirichlet Boundary Condition for Time-Dependent Complex Partial Differential Equations and its Application to the Nonlinear Schödinger Equation , 2011, SIAM J. Sci. Comput..

[5]  A. Atangana,et al.  Stability and convergence of the space fractional variable-order Schrödinger equation , 2013 .

[6]  S. Secchi Ground state solutions for nonlinear fractional Schrödinger equations in RN , 2012, 1208.2545.

[7]  M. Jeng,et al.  On the nonlocality of the fractional Schrödinger equation , 2010 .

[8]  Weizhu Bao,et al.  Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation , 2012, Math. Comput..

[9]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[10]  Weizhu Bao,et al.  Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation , 2013, J. Comput. Phys..

[11]  Zhi-Zhong Sun,et al.  On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations , 2010, Comput. Math. Appl..

[12]  B. Reichel,et al.  Coupled nonlinear Schrödinger equations in optic fibers theory , 2009 .

[13]  S. Secchi,et al.  Soliton dynamics for fractional Schrödinger equations , 2013, 1305.1804.

[14]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[15]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Ming Cheng,et al.  Bound state for the fractional Schrödinger equation with unbounded potential , 2012 .

[18]  On the consistency of the solutions of the space fractional Schrödinger equation , 2012, 1203.4556.

[19]  Zhi-zhong Sun,et al.  On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation , 1998 .

[20]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[21]  F. Demengel,et al.  Fractional Sobolev Spaces , 2012 .

[22]  Luming Zhang,et al.  New conservative difference schemes for a coupled nonlinear Schrödinger system , 2010, Appl. Math. Comput..

[23]  Thiab R. Taha,et al.  A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation , 2007, Math. Comput. Simul..

[24]  Yuri Luchko Fractional Schrödinger equation for a particle moving in a potential well , 2013 .

[25]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[26]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[27]  Kay L Kirkpatrick,et al.  On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions , 2011, 1108.6136.

[28]  B. Guo,et al.  Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation , 2012 .

[29]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[30]  P. Amore,et al.  Collocation method for fractional quantum mechanics , 2009, 0912.2562.

[31]  Fawang Liu,et al.  A second-order accurate numerical approximation for the Riesz space fractional advection-dispersion equation , 2012 .

[32]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[33]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[34]  Ludwig Gauckler,et al.  Nonlinear Schrödinger Equations and Their Spectral Semi-Discretizations Over Long Times , 2010, Found. Comput. Math..

[35]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[36]  Yifa Tang,et al.  Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation , 2002 .