Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases

Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N′-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)].

[1]  P. A. Ajibade,et al.  Synthesis and in vitro anticancer, antibacterial, and antioxidant studies of unsymmetrical Schiff base derivatives of 4-[(1E)-N-(2-aminoethyl)ethanimidoyl]benzene-1,3-diol , 2016, Research on Chemical Intermediates.

[2]  P. A. Ajibade,et al.  Transition metal complexes of symmetrical and asymmetrical Schiff bases as antibacterial, antifungal, antioxidant, and anticancer agents: progress and prospects , 2015 .

[3]  P. A. Ajibade,et al.  Synthesis, Characterization and Biological Studies of Metal(II) Complexes of (3E)-3-[(2-{(E)-[1-(2,4-Dihydroxyphenyl)ethylidene]amino}ethyl)imino]-1-phenylbutan-1-one Schiff Base , 2015, Molecules.

[4]  P. A. Ajibade,et al.  Synthesis, Characterization, Antioxidant, and Antibacterial Studies of Some Metal(II) Complexes of Tetradentate Schiff Base Ligand: (4E)-4-[(2-{(E)-[1-(2,4-Dihydroxyphenyl)ethylidene]amino}ethyl)imino]pentan-2-one , 2015, Bioinorganic chemistry and applications.

[5]  P. A. Ajibade,et al.  Synthesis, characterization, and in vitro antioxidant and anticancer studies of ruthenium(III) complexes of symmetric and asymmetric tetradentate Schiff bases , 2015 .

[6]  M. Alias,et al.  Synthesis, physical characterization and biological evaluation of Schiff base M(II) complexes , 2014 .

[7]  M. A. Neelakantan,et al.  Cu(II), Ni(II), and Zn(II) Complexes of Salan-Type Ligand Containing Ester Groups: Synthesis, Characterization, Electrochemical Properties, and In Vitro Biological Activities , 2013, Bioinorganic chemistry and applications.

[8]  Dinesh Kumar,et al.  An overview of biological aspects of Schiff base metal complexes , 2013 .

[9]  R. Schneider-Stock,et al.  Inhibition of Tumor Promotion by Parthenolide: Epigenetic Modulation of p21 , 2012, Cancer Prevention Research.

[10]  R. Butcher,et al.  Studies on synthesis, characterization, DNA interaction and cytotoxicity of ruthenium(II) Schiff base complexes. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  H. A. Rudbari,et al.  Synthesis, characterization and crystal structure determination of a new oxovanadium(IV) Schiff base complex: The catalytic activity in the epoxidation of cyclooctene , 2012 .

[12]  S. Ravichandran,et al.  Transition Metal Complexes of Isonicotinoyl–hydrazone-4-diphenylaminobenzaldehyde: Synthesis, Characterization and Antimicrobial Studies , 2012 .

[13]  G. Arts,et al.  SYNTHESIS, CHARACTERIZATION, ANTIMICROBIAL ACTIVITIES AND DNA- BINDING STUDIES OF SOME Ru (III) COMPLEXES OF SCHIFF BASES , 2012 .

[14]  R. Butcher,et al.  Synthesis, characterization, DNA binding and cleavage properties and anticancer studies of ruthenium(III) Schiff base complexes , 2012, Transition Metal Chemistry.

[15]  M. Viuda‐Martos,et al.  Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. , 2010 .

[16]  Y. Ho,et al.  Ru(II) complexes of N4 and N2O2 macrocyclic Schiff base ligands: their antibacterial and antifungal studies. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  S. Mandal,et al.  Overexpression of human histone methylase MLL1 upon exposure to a food contaminant mycotoxin, deoxynivalenol , 2009, The FEBS journal.

[18]  C. Bolos,et al.  Synthesis, characterization, toxicity, cytogenetic and in vivo antitumor studies of 1,1-dithiolate Cu(II) complexes with di-, tri-, tetra- amines and 1,3-thiazoles. Structure-activity correlation. , 2009, Bioorganic & medicinal chemistry.

[19]  A. Manimaran,et al.  Mononuclear Ru(III) Schiff base complexes: synthesis, spectral, redox, catalytic and biological activity studies. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  Shashidhar,et al.  Synthesis, spectral characterization and biological activity of benzofuran Schiff bases with Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes , 2008 .

[21]  K. Pandey,et al.  Mixed-ligand Ru(II) complexes with 2,2'-bipyridine and tetradentate Schiff bases auxiliary ligands: Synthesis, physico-chemical study, DFT analysis, electrochemical and Na+ binding properties. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[22]  A. Batista,et al.  Oxovanadium(IV) and (V) complexes of acetylpyridine-derived semicarbazones exhibit insulin-like activity , 2008 .

[23]  Mohsen S. Asker,et al.  Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[24]  Yu Liu,et al.  Synthesis, structure and catalytic activity of cycloruthenated carbonyl complexes containing arylazo phenolate ligands , 2007 .

[25]  K. Natarajan,et al.  Synthesis, characterization, electro chemistry, catalytic and biological activities of ruthenium(III) complexes with bidentate N, O/S donor ligands. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  T. E. Abraham,et al.  In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. , 2006, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[27]  R. Ramesh,et al.  Catalytic and biological activities of Ru(III) mixed ligand complexes containing N,O donor of 2-hydroxy-1-naphthylideneimines. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[28]  Mehmet Tümer,et al.  Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: synthesis, characterization, properties and biological activity , 2005 .

[29]  T. Katsuki Unique Asymmetric Catalysis of cis-β Metal Complexes of Salen and Its Related Schiff-Base Ligands , 2005 .

[30]  P. Cozzi Metal-Salen Schiff base complexes in catalysis: practical aspects. , 2004, Chemical Society reviews.

[31]  S. Ihm,et al.  Novel bidentate ruthenium(III) Schiff base complexes: synthetic, spectral, electrochemical, catalytic and antimicrobial studies , 2004 .

[32]  M. Oktay,et al.  Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). , 2004, Journal of ethnopharmacology.

[33]  B. D. Clercq,et al.  Immobilization of multifunctional Schiff base containing ruthenium complexes on MCM-41 , 2003 .

[34]  F. Verpoort,et al.  Synthesis of highly active ruthenium indenylidene complexes for atom-transfer radical polymerization and ring-opening-metathesis polymerization. , 2003, Angewandte Chemie.

[35]  R. Eady Current status of structure function relationships of vanadium nitrogenase , 2003 .

[36]  D. Gefel,et al.  Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes , 2003 .

[37]  U. Russo,et al.  Diorganotin(IV)-promoted deamination of amino acids by pyridoxal: SnR2 2+ complexes of pyridoxal 5′-phosphate and of the Schiff base pyridoxal-pyridoxamine (PLPM), and antibacterial activities of PLPM and [SnR2(PLPM-2H)] (R=Me, Et, Bu, Ph) , 2003 .

[38]  Saadia A. Ali,et al.  Chromium, Molybdenum and Ruthenium Complexes of 2-Hydroxyacetophenone Schiff Bases , 2002 .

[39]  R. C. Teles,et al.  Serine protease inhibitors from Amazon leguminosae seeds: purification and preliminary characterization of two chymotrypsin inhibitors from Inga umbratica , 2001 .

[40]  L. Schlesinger,et al.  Virulent Strains of Helicobacter pylori Demonstrate Delayed Phagocytosis and Stimulate Homotypic Phagosome Fusion in Macrophages , 2000, The Journal of experimental medicine.

[41]  S. Serin,et al.  PREPARATION, SPECTROSCOPIC CHARACTERISATION AND THERMAL ANALYSES STUDIES OF THE CU(II), PD(II) AND VO(IV) COMPLEXES OF SOME SCHIFF BASE LIGANDS , 1998 .

[42]  M. Battell,et al.  Vanadium compounds as insulin mimics. , 1999, Metal ions in biological systems.

[43]  L. Que,et al.  Model studies of iron―tyrosinate proteins , 1985 .

[44]  Stuart A. Rice,et al.  Inorganic Electronic Spectroscopy , 1968 .

[45]  J. Hine,et al.  Equilibrium in formation and conformational isomerization of imines derived from isobutyraldehyde and saturated aliphatic primary amines , 1967 .

[46]  C. Ballhausen,et al.  Introduction to Ligand Field Theory , 1962 .