A substructured FE‐shell/XFE‐3D method for crack analysis in thin‐walled structures

Stress intensity factors in thin-walled cracked structures are computed using a mixed-dimensional finite element (FE) shell/extended finite element (XFE) 3D formulation. The present approach belongs to the family of 'substructuring' methods. The domain is decomposed into cracked and safe subdomains which are solved by the XFE-code and the FE-software, respectively. The XFE-3D domain may contain cracks that do not necessarily join the top and bottom faces of the plate. The interface problem is solved using the finite element tearing and interconnecting method. Several validations are provided. Copyright (c) 2007 John Wiley & Sons, Ltd.

[1]  Stéphane Bordas,et al.  Enriched finite elements and level sets for damage tolerance assessment of complex structures , 2006 .

[2]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[3]  Laurent Champaney,et al.  MS-XFEM : An extended micro-macro approach for crack propagation , 2006 .

[4]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[5]  C. Sun,et al.  Characteristics of three-dimensional stress fields in plates with a through-the-thickness crack , 2000 .

[6]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[7]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[8]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[9]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[10]  David M. Parks,et al.  Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors , 2000 .

[11]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[12]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[13]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[14]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[15]  Thomas Pardoen,et al.  Mode I fracture of sheet metal , 2004 .

[16]  J. Newman,et al.  Analysis of surface cracks in finite plates under tension or bending loads , 1979 .

[17]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[18]  Jean-François Remacle,et al.  An algorithm oriented mesh database , 2003, IMR.

[19]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[20]  Daniel Rixen,et al.  Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm , 1998 .

[21]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[22]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[23]  T. Belytschko,et al.  Non‐linear analysis of shells with arbitrary evolving cracks using XFEM , 2005 .

[24]  P. C. Paris,et al.  The Stress Analysis of Cracks Handbook, Third Edition , 2000 .

[25]  Vijay K. Varadan,et al.  FINITE ELEMENT MODELLING OF STRUCTURES INCLUDING PIEZOELECTRIC ACTIVE DEVICES , 1997 .

[26]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[27]  Ted Belytschko,et al.  Modeling fracture in Mindlin–Reissner plates with the extended finite element method , 2000 .

[28]  Cecil Armstrong,et al.  Mixed‐dimensional coupling in finite element models , 2000 .

[29]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .