Divergence Preserving Interpolation on Anisotropic Quadrilateral Meshes

Abstract For the solution of incompressible fluid models with inf-sup stable finite element pairs for velocity and pressure, interpolation operators are desirable which preserve the property of discrete zero divergence and enjoy the same local approximation properties as standard interpolation operators. In this work, we show how an anisotropic interpolation operator can be modified preserving the discrete divergence and maintaining certain anisotropic interpolation properties. Beside the construction of such an operator for special anisotropic meshes, we discuss the applicability of anisotropic grid resolution of boundary layers for incompressible low-turbulent flow problems.

[1]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[2]  Maxim A. Olshanskii,et al.  On the domain geometry dependence of the LBB condition , 2000 .

[3]  Rolf Stenberg,et al.  Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes , 1999, Numerische Mathematik.

[4]  John A. Trangenstein,et al.  Mixed and Hybrid Finite Elements , 2013 .

[5]  L. R. Scott,et al.  A quasi-local interpolation operator¶preserving the discrete divergence , 2003 .

[6]  Tassos G. Karayiannis,et al.  Low turbulence natural convection in an air filled square cavity: Part II: the turbulence quantities , 2000 .

[7]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[8]  Volker John,et al.  Simulations of the turbulent channel flow at Reτ = 180 with projection-based finite element variational multiscale methods , 2007 .

[9]  Interpolation of non-smooth functions on anisotropic finite element meshes , 1999 .

[10]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[11]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[12]  Manfred Dobrowolski,et al.  On the LBB constant on stretched domains , 2003 .

[13]  Serge Nicaise,et al.  The inf-sup condition for the Bernardi-Fortin-Raugel element on anisotropic meshes , 2003 .

[14]  Johannes Löwe,et al.  A Projection-Based Variational Multiscale Method for the Incompressible Navier–Stokes/Fourier Model , 2011 .

[15]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Gert Lube,et al.  Analysis of a variational multiscale method for Large-Eddy simulation and its application to homogeneous isotropic turbulence , 2010 .

[18]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[19]  Malte Braack A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes , 2008 .

[20]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[21]  Thomas Apel,et al.  Stability of discretizations of the Stokes problem on anisotropic meshes , 2003, Math. Comput. Simul..

[22]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[23]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[24]  Dominik Schötzau,et al.  Mixed hp - FEM on anisotropic meshes , 1998 .

[25]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[26]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .