A normalized basis for reduced Clough-Tocher splines

We present the construction of a suitable normalized B-spline representation for reduced cubic Clough-Tocher splines. The basis functions have a local support, they are nonnegative, and they form a partition of unity. Geometrically, the problem can be interpreted as the determination of a set of triangles that must contain a specific set of points. This leads to a natural definition of tangent control triangles. We also consider a stable computation of the Bezier control net of the spline surface.

[1]  A. Bultheel,et al.  Stable multiresolution analysis on triangles for surface compression , 2006 .

[2]  Gerald E. Farin,et al.  A modified Clough-Tocher interpolant , 1985, Comput. Aided Geom. Des..

[3]  Philippe G. Ciarlet,et al.  Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle , 1978 .

[4]  Larry L. Schumaker,et al.  Smooth macro-elements based on Clough-Tocher triangle splits , 2002, Numerische Mathematik.

[5]  P. Sablonnière,et al.  Triangular finite elements of HCT type and classCρ , 1994, Adv. Comput. Math..

[6]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[7]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Clough-Tocher triangulations , 2001, Numerische Mathematik.

[8]  Larry L. Schumaker,et al.  Nonnegativity preserving macro-element interpolation of scattered data , 2010, Comput. Aided Geom. Des..

[9]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[10]  Michel Bernadou,et al.  Basis functions for general Hsieh‐Clough‐Tocher triangles, complete or reduced , 1981 .

[11]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[12]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[13]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[14]  J. Mason,et al.  Algorithms for approximation , 1987 .

[15]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[16]  Adhemar Bultheel,et al.  On the stability of normalized Powell-Sabin B-splines , 2004 .

[17]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[18]  C. Manni Shape Control in Powell-Sabin Quasi-Interpolation , 2007 .

[19]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[20]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[21]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[22]  Stephen Mann,et al.  Cubic precision Clough-Tocher interpolation , 1999, Comput. Aided Geom. Des..