Fiber Nonlinearity and Capacity: Single-Mode and Multimode Fibers

This chapter starts by providing some statistics on traffic demand in optical networks and the capacity scaling over time of commercial optical communication systems. Next there is a brief review of the basic results of information theory. We then describe the stochastic nonlinear Schrodinger equation (SNSE), the equation that governs nonlinear propagation in SMFs. This is followed by calculations of nonlinear capacity limit estimates for the SSMF, and advanced fibers with improved transmission characteristics are then presented along with an analytical formula of nonlinear capacity. We then introduce a set of coupled partial differential equations (PDEs) describing nonlinear propagation of polarization-division multiplexed (PDM) signals in SMFs along with nonlinear capacity estimates for these systems. This followed by a focus on multimode fibers (MMFs) and multicore fibers (MCFs). The rest of the chapter then focuses on nonlinear effects in MMFs and MCFs, with an emphasis on MMFs and FMFs. The chapter concludes by reporting experimental observations of two important effects involving nonlinear effects between spatial modes: inter-modal cross-phase modulation (IM-XPM) and inter-modal four-wave mixing (IM-FWM).

[1]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[2]  J V Moloney,et al.  Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  R. Gallager Information Theory and Reliable Communication , 1968 .

[4]  R. Stolen Phase-matched-stimulated four-photon mixing in silica-fiber waveguides , 1975 .

[5]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[6]  Masanori Koshiba,et al.  Novel multi-core fibers for mode division multiplexing: proposal and design principle , 2009, IEICE Electron. Express.

[7]  Ting Wang,et al.  64-Tb/s (640×107-Gb/s) PDM-36QAM transmission over 320km using both pre- and post-transmission digital equalization , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[8]  Peter J. Winzer,et al.  WDM/SDM transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 kmb/s/Hz , 2011 .

[9]  Dietrich Marcuse,et al.  Curvature loss formula for optical fibers , 1976 .

[10]  Kin Seng Chiang,et al.  Microbend-induced mode coupling in a graded-index multimode fiber. , 2005, Applied optics.

[11]  Takashi Sasaki,et al.  Low-crosstalk and low-loss multi-core fiber utilizing fiber bend , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[12]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[13]  D. Marcuse,et al.  Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence , 1997 .

[14]  A. Mecozzi Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers , 1994 .

[15]  S. Randel,et al.  Space-division multiplexed transmission over 4200-km 3-core microstructured fiber , 2012, OFC/NFOEC.

[16]  Ali H. Sayed,et al.  Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links , 2006, IEEE Communications Letters.

[17]  K. Petermann,et al.  Nonlinear interference in mode multiplexed multi-mode fibers , 2012, 2012 IEEE Photonics Society Summer Topical Meeting Series.

[18]  G. Millot,et al.  Observation of modulational instability induced by velocity-matched cross-phase modulation in a normally dispersive bimodal fiber. , 1997, Optics letters.

[19]  Ali H. Sayed,et al.  Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links [Topics in Optical Communications] , 2007, IEEE Communications Magazine.

[20]  D. Gloge,et al.  Optical power flow in multimode fibers , 1972 .

[21]  Andrea J. Goldsmith,et al.  Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks , 2004, IEEE Journal on Selected Areas in Communications.

[22]  Dirk Müller,et al.  Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers , 2003, Science.

[23]  H. Nyquist,et al.  Certain factors affecting telegraph speed , 1924, Journal of the A.I.E.E..

[24]  R. Hartley Transmission of information , 1928 .

[25]  S. Chandrasekhar,et al.  WDM/SDM transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 kmb/s/Hz , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[26]  B. Zhu,et al.  Seven-core multicore fiber transmissions for passive optical network. , 2010, Optics express.

[27]  P. Winzer Energy-Efficient Optical Transport Capacity Scaling Through Spatial Multiplexing , 2011, IEEE Photonics Technology Letters.

[28]  Francesca Parmigiani,et al.  First demonstration of 2μm data transmission in a low-loss hollow core photonic Bandgap fiber , 2012 .

[29]  Francesco Poletti,et al.  Dynamics of femtosecond supercontinuum generation in multimode fibers. , 2009, Optics express.

[30]  Jian Zhao,et al.  Approaching the Non-Linear Shannon Limit , 2010, Journal of Lightwave Technology.

[31]  Peter J. Winzer,et al.  Capacity limits of information transmission in optically-routed fiber networks , 2010 .

[32]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[33]  R. M. Derosier,et al.  Four-photon mixing and high-speed WDM systems , 1995 .

[34]  Peter J. Winzer,et al.  Capacity Limits of Fiber-Optic Communication Systems , 2009, OFC 2009.

[35]  A. Carena,et al.  Analytical results on channel capacity in uncompensated optical links with coherent detection , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[36]  W. B. Gardner Microbending loss in optical fibers , 1975, The Bell System Technical Journal.

[37]  T. Sasaki,et al.  Characterization of Crosstalk in Ultra-Low-Crosstalk Multi-Core Fiber , 2012, Journal of Lightwave Technology.

[38]  Benyuan Zhu,et al.  Statistical Models of Multicore Fiber Crosstalk Including Time Delays , 2012, Journal of Lightwave Technology.

[39]  Roland Ryf,et al.  6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. , 2011, Optics express.

[40]  E. A. J. Marcatili,et al.  Multimode theory of graded-core fibers , 1973 .

[41]  J. Gordon,et al.  Solitons in Optical Fibers: Fundamentals and Applications , 2006 .

[42]  Xi Chen,et al.  Information Spectral Efficiency and Launch Power Density Limits Due to Fiber Nonlinearity for Coherent Optical OFDM Systems , 2011, IEEE Photonics Journal.

[43]  Osamu Shimakawa,et al.  Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[44]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[45]  Sudharman K. Jayaweera,et al.  An energy-efficient virtual MIMO architecture based on V-BLAST processing for distributed wireless sensor networks , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[46]  Benyuan Zhu,et al.  Low cross-talk design of multi-core fibers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[47]  Sergio Verdú,et al.  Spectral efficiency in the wideband regime , 2002, IEEE Trans. Inf. Theory.

[48]  D. Gloge Weakly guiding fibers. , 1971, Applied optics.

[49]  Benyuan Zhu,et al.  Crosstalk in multicore fibers with randomness: gradual drift vs. short-length variations. , 2012, Optics express.

[50]  B. Puttnam,et al.  305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber , 2013, Journal of Lightwave Technology.

[51]  Helmut Bölcskei,et al.  On the capacity of OFDM-based spatial multiplexing systems , 2002, IEEE Trans. Commun..

[52]  S. Randel,et al.  Inter-modal nonlinear interactions between well separated channels in spatially-multiplexed fiber transmission , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[53]  Alexander L Gaeta,et al.  Nonlinear optics in hollow-core photonic bandgap fibers. , 2008, Optics express.

[54]  Birefringence effects in space-division multiplexed fiber transmission systems: Generalization of Manakov equation , 2012, 2012 IEEE Photonics Society Summer Topical Meeting Series.

[55]  A. Gnauck,et al.  Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber , 2012, OFC/NFOEC.

[56]  Xiang Zhou,et al.  Supermodes for optical transmission. , 2011, Optics express.

[57]  D. Marcuse Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion , 1991 .

[58]  Leonid G. Kazovsky,et al.  Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators , 1996 .

[59]  A. Mecozzi,et al.  Nonlinear propagation in multi-mode fibers in the strong coupling regime. , 2012, Optics express.

[60]  B. Zhu,et al.  Statistics of crosstalk in bent multicore fibers. , 2010, Optics express.

[61]  Kazunori Mukasa,et al.  Investigation on multi-core fibers with large Aeff and low micro bending loss , 2010 .

[62]  Stuart,et al.  Dispersive multiplexing in multimode optical fiber , 2000, Science.

[63]  R. W. Tkach,et al.  Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers , 2013, IEEE Photonics Technology Letters.

[64]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[65]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[66]  J. Bromage,et al.  Raman amplification for fiber communications systems , 2003, Journal of Lightwave Technology.

[67]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[68]  R. W. Tkach,et al.  Experimental Observation of Inter-Modal Cross-Phase Modulation in Few-Mode Fibers , 2013, IEEE Photonics Technology Letters.

[69]  T. Kobayashi,et al.  102.3-Tb/s (224 × 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone , 2012, OFC/NFOEC.

[70]  M. Kakui,et al.  Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance , 2002 .

[71]  A. Gnauck,et al.  Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 $\,\times\,$6 MIMO Processing , 2012, Journal of Lightwave Technology.

[72]  Harry Nyquist Certain Topics in Telegraph Transmission Theory , 1928 .

[73]  J.-J. Werner,et al.  The HDSL environment (high bit rate digital subscriber line) , 1991 .

[74]  G. Raybon,et al.  Pseudo-Linear Transmission of High-Speed TDM Signals , 2002 .

[75]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[76]  J. Pocholle,et al.  Mode coupling in a multimode optical fiber with microbends. , 1975, Applied optics.

[77]  Antonia Maria Tulino,et al.  Multiple-antenna capacity in the low-power regime , 2003, IEEE Trans. Inf. Theory.

[78]  P. Roberts,et al.  Ultimate low loss of hollow-core photonic crystal fibres. , 2005, Optics express.

[79]  A. Gnauck,et al.  MIMO-Based Crosstalk Suppression in Spatially Multiplexed 3$\,\times \,$56-Gb/s PDM-QPSK Signals for Strongly Coupled Three-Core Fiber , 2011, IEEE Photonics Technology Letters.

[80]  S. Mumtaz,et al.  Reduction of nonlinear impairments in coupled-core multicore optical fibers , 2012, 2012 IEEE Photonics Society Summer Topical Meeting Series.

[81]  J. L. Massey Channel Models for Random-Access Systems , 1988 .

[82]  Lei Xu,et al.  Spatial-domain-based multidimensional modulation for multi-Tb/s serial optical transmission. , 2011, Optics express.

[83]  E. Ip,et al.  101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[84]  Shlomo Shamai,et al.  On the capacity of a twisted-wire pair: Gaussian model , 1990, IEEE Trans. Commun..

[85]  Robert W. Tkach,et al.  Demonstration of broadband inter-modal four-wave mixing in graded-index few-mode fibers , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[86]  C Jacobsen,et al.  Low-loss photonic crystal fibers for transmission systems and their dispersion properties. , 2004, Optics express.

[87]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[88]  R. Stolen,et al.  The Early Years of Fiber Nonlinear Optics , 2008, Journal of Lightwave Technology.

[89]  John E. Bjorkholm,et al.  Phase‐matched three‐wave mixing in silica fiber optical waveguides , 1974 .

[90]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[91]  Andrea J. Goldsmith,et al.  Energy-constrained modulation optimization , 2005, IEEE Transactions on Wireless Communications.

[92]  Ivan B Djordjevic Energy-efficient spatial-domain-based hybrid multidimensional coded-modulations enabling multi-Tb/s optical transport. , 2011, Optics express.

[93]  Francesco Poletti,et al.  Description of ultrashort pulse propagation in multimode optical fibers , 2008 .

[94]  R. Essiambre,et al.  Nonlinear Propagation in Multimode and Multicore Fibers: Generalization of the Manakov Equations , 2012, Journal of Lightwave Technology.

[95]  J. Gordon,et al.  Quantum Effects in Communications Systems , 1962, Proceedings of the IRE.

[96]  A. Yariv,et al.  Quantum Fluctuations and Noise in Parametric Processes. I. , 1961 .

[97]  Don M. Boroson A survey of technology-driven capacity limits for free-space laser communications , 2007, SPIE Optical Engineering + Applications.

[98]  R. Stolen,et al.  Raman gain in glass optical waveguides , 1973 .

[99]  S. Ramachandran,et al.  High-energy fiber lasers at non-traditional colours, via intermodal nonlinearities , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[100]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[101]  Kunimasa Saitoh,et al.  Heterogeneous multi-core fibers: proposal and design principle , 2009, IEICE Electron. Express.

[102]  J. Gordon,et al.  Quantum Statistics of Masers and Attenuators , 1963 .

[103]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[104]  Simon Haykin,et al.  Communication Systems , 1978 .

[105]  John G. Proakis,et al.  Digital Communications , 1983 .

[106]  L. Cohen,et al.  Comparison of single-mode fiber dispersion measurement techniques , 1985, Journal of Lightwave Technology.

[107]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[108]  René-Jean Essiambre,et al.  Capacity Trends and Limits of Optical Communication Networks , 2012, Proceedings of the IEEE.

[109]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[110]  R. Essiambre,et al.  Nonlinear Shannon Limit in Pseudolinear Coherent Systems , 2012, Journal of Lightwave Technology.

[111]  R. Olshansky,et al.  Mode Coupling Effects in Graded-index Optical Fibers. , 1975, Applied optics.

[112]  D. Marcuse,et al.  Coupled mode theory of round optical fibers , 1973 .

[113]  Robert W. Tkach Scaling optical communications for the next decade and beyond , 2010 .

[114]  D. Gloge,et al.  Bending loss in multimode fibers with graded and ungraded core index. , 1972, Applied optics.