Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver

The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of ~16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.

C. L. Kuo | J. E. Ruhl | J. E. Carlstrom | C. Tucker | Adrian T. Lee | P. A. R. Ade | G. C. Hilton | K. D. Irwin | E. M. Leitch | K. W. Yoon | J. A. Shariff | A. Cukierman | G. Smecher | A. Suzuki | J. E. Austermann | C. L. Reichardt | B. A. Benson | L. E. Bleem | N. W. Halverson | J. W. Henning | S. S. Meyer | B. R. Saliwanchik | E. Shirokoff | K. Story | J. D. Vieira | G. Wang | C. L. Chang | H. M. Cho | W. Everett | W. L. Holzapfel | F. W. Carter | Z. Ahmed | T. M. Crawford | A. T. Lee | V. Novosad | S. Padin | K. Byrum | K. Arnold | A. N. Bender | J. F. Cliche | N. L. Harrington | K. L. Thompson | K. Vanderlinde | T. de Haan | M. A. Dobbs | J. C. Groh | M. Korman | A. Nadolski | T. Natoli | C. M. Posada | J. T. Sayre | A. A. Stark | N. Whitehorn | V. Yefremenko | D. Kubik | Ian Shirley | D. Dutcher | R. Guyser | A. Rahlin | A. J. Anderson | J. Avva | R. Basu Thakur | D. A. Czaplewski | J. Ding | R. Divan | A. Gilbert | A. Harke-Hosemann | K. Hattori | N. Huang | O. Jeong | T. Khaire | S. Lendinez | C. S. Miller | J. Montgomery | H. Nguyen | Z. Pan | J. Pearson | J. Sobrin | L. Stan | Q. Y. Tang | S. Meyer | A. Lee | P. Ade | J. Ruhl | W. Everett | Z. Ahmed | A. Anderson | J. Austermann | J. Avva | R. Thakur | A. Bender | B. Benson | J. Carlstrom | F. Carter | J. Cliche | A. Cukierman | T. Haan | J. Ding | M. Dobbs | D. Dutcher | A. Gilbert | J. Groh | N. Halverson | A. Harke-Hosemann | N. Harrington | J. Henning | G. Hilton | W. Holzapfel | N. Huang | K. Irwin | O. Jeong | T. Khaire | M. Korman | D. Kubik | C. Kuo | J. Montgomery | A. Nadolski | T. Natoli | H. Nguyen | V. Novosad | S. Padin | Z. Pan | J. Pearson | C. Posada | A. Rahlin | J. Sayre | I. Shirley | E. Shirokoff | G. Smecher | J. Sobrin | A. Stark | K. Story | A. Suzuki | K. Thompson | C. Tucker | K. Vanderlinde | J. Vieira | G. Wang | N. Whitehorn | V. Yefremenko | K. Yoon | D. Czaplewski | P. Ade | T. de Haan | R. Divan | H. Cho | C. Reichardt | L. Bleem | T. Crawford | E. Leitch | B. Saliwanchik | K. Hattori | K. Byrum | K. Arnold | L. Stan | S. Lendínez | R. Basu Thakur | C. S. Miller | R. Guyser | Gensheng Wang | J. Shariff | G. Hilton | Chaohua Kuo | C. Chang | K. Thompson | K. Irwin

[1]  E. Leitch,et al.  SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope , 2012, Other Conferences.

[2]  Adrian T. Lee,et al.  Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .

[3]  Adrian T. Lee,et al.  Optimization of cold resonant filters for frequency domain multiplexed readout of POLARBEAR-2 , 2014, Astronomical Telescopes and Instrumentation.

[4]  Adrian T. Lee,et al.  Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements. , 2011, The Review of scientific instruments.

[5]  A. Suzuki,et al.  Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems , 2016 .

[6]  S. Siegel,et al.  ICE: a scalable, low-cost FPGA-based telescope signal processing and networking system , 2016, 1608.06262.

[7]  Neil Rowlands,et al.  Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes , 2014, Astronomical Telescopes and Instrumentation.

[8]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[9]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[10]  M. Lueker,et al.  Frequency-domain multiplexed readout of transition-edge sensor arrays with a superconducting quantum interference device , 2005 .

[11]  Matt Dobbs,et al.  Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver , 2016, Astronomical Telescopes + Instrumentation.

[12]  John M. Martinis,et al.  DC SQUID series array amplifiers with 120 MHz bandwidth (corrected) , 2001 .

[13]  Graeme Smecher,et al.  Improved performance of TES bolometers using digital feedback , 2012, Other Conferences.