Solution of the inverse radiation problem for inhomogeneous and anisotropically scattering media using a Monte Carlo technique

An analysis is presented for the solution of the inverse radiation problem using a Monte Carlo technique. For inhomogeneous planar media, the profile of the single scattering albedo is obtained from the inverse analysis. For homogeneous, anisotropically scattering media, the single scattering albedo and the asymmetry factor are recovered. A step phase function approximation is used to account for the anisotropic scattering in the medium. The confidence bounds on the estimated parameters for errors in the input data are evaluated. The results show that the medium properties can be recovered with high accuracy even if there is up to 10% error in the input data. The primary advantage of the Monte Carlo method is that a single direct solution yields the coefficients of a multivariate polynomial for each set of observation data, which are then used to obtain the medium properties by a non-linear least-square minimization technique.

[1]  Methods for estimating the similarity parameter of clouds from internal measurements of the scattered radiation field , 1985 .

[2]  Study of the P1 approximation in an inverse scattering problem , 1987 .

[3]  Inverse radiative transfer with a delta-eddington phase function , 1987 .

[4]  S. Karanjai,et al.  Inverse radiative transfer problem with delta-Eddington phase function in a nonsymmetric model , 1985 .

[5]  N. M. Schaeffer Reactor Shielding for Nuclear Engineers , 1973 .

[6]  M. N. Özişik,et al.  Inverse radiation problems in inhomogeneous media , 1988 .

[7]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[8]  Edward W. Larsen,et al.  Solution of multidimensional inverse transport problems , 1984 .

[9]  Norman J. McCormick Recent developments in inverse scattering transport meteods , 1984 .

[10]  On the Henyey-Greenstein approximation to scattering phase functions , 1988 .

[11]  Norman J. McCormick,et al.  Methods for solving inverse problems for radiation transport—an update , 1986 .

[12]  William L. Dunn Inverse Monte Carlo solutions for radiative transfer in inhomogeneous media , 1983 .

[13]  C. E. Siewert,et al.  On the inverse problem for a three-term phase function , 1979 .

[14]  N. McCormick,et al.  Equations for Estimating the Similarity Parameter from Radiation Measurements within Weakly Absorbing Optically Thick Clouds , 1986 .

[15]  Norman J. McCormick,et al.  Transport scattering coefficients from reflection and transmission measurements , 1979 .

[16]  M. Pinar Mengüç,et al.  A STEP-FUNCTION APPROXIMATION FOR THE EXPERIMENTAL DETERMINATION OF THE EFFECTIVE SCATTERING PHASE FUNCTION OF PARTICLES , 1990 .

[17]  W. L. Dunn,et al.  On the numerical characteristics of an inverse solution for three-term radiative transfer , 1980 .

[18]  Edward W. Larsen,et al.  Solution of three dimensional inverse transport problems , 1988 .

[19]  M. N. Özişik Radiative Transfer And Interactions With Conduction And Convection , 1985 .

[20]  John A. Davies,et al.  A multidimensional inverse problem in transport theory , 1979 .

[21]  C. E. Siewert,et al.  Radiative transfer in finite inhomogeneous plane-parallel atmospheres , 1982 .

[22]  C. E. Siewert,et al.  A new approach to the inverse problem , 1978 .

[23]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[24]  Michael D. King,et al.  A method for determining the single scattering albedo of clouds through observation of the internal scattered radiation field , 1981 .

[25]  M. N. Özişik,et al.  An inverse radiation problem , 1989 .

[26]  A constrained least-squares method for limited inverse scattering problems , 1988 .

[27]  J. R. Howell,et al.  Thermal radiation in participating media - The past, the present, and some possible futures , 1988 .

[28]  M. Pinar Mengüç,et al.  Comparison of radiative transfer approximations for a highly forward scattering planar medium. , 1983 .

[29]  Norman J. McCormick,et al.  A critique of inverse solutions to slab geometry transport problems , 1981 .

[30]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[31]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[32]  C. Siewert On establishing a two-term scattering law in the theory of radiative transfer , 1979 .

[33]  H. Kahn Random sampling (Monte Carlo) techniques in neutron attenuation problems--II. , 1950, Nucleonics.

[34]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[35]  N J McCormick Inverse methods for remote determination of properties of optically thick atmospheres. , 1983, Applied optics.

[36]  William L. Dunn Inverse Monte Carlo analysis , 1981 .

[37]  M. Pinar Mengüç,et al.  Radiation heat transfer in combustion systems , 1987 .

[38]  Norman J. McCormick,et al.  Inverse problem transport calculations for anisotropic scattering coefficients , 1981 .