Follow the leader: the use of leader peptides to guide natural product biosynthesis.

[1]  Wen Liu,et al.  Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. , 2009, ACS chemical biology.

[2]  N. Kelleher,et al.  Distributive and Directional Behavior of Lantibiotic Synthetases Revealed by High-Resolution Tandem Mass Spectrometry , 2009, Journal of the American Chemical Society.

[3]  Matthew R. Levengood,et al.  In Vitro Mutasynthesis of Lantibiotic Analogues Containing Nonproteinogenic Amino Acids , 2009, Journal of the American Chemical Society.

[4]  O. Kuipers,et al.  Directionality and Coordination of Dehydration and Ring Formation during Biosynthesis of the Lantibiotic Nisin , 2009, The Journal of Biological Chemistry.

[5]  A. Horswill,et al.  Identification of Staphylococcus aureus AgrD Residues Required for Autoinducing Peptide Biosynthesis* , 2009, The Journal of Biological Chemistry.

[6]  I. Chopra,et al.  Dissecting Structural and Functional Diversity of the Lantibiotic Mersacidin , 2009, Chemistry & biology.

[7]  T. Hemscheidt,et al.  Substrate specificity and scope of MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster. , 2009, ACS chemical biology.

[8]  J. Walton,et al.  Processing of the Phalloidin Proprotein by Prolyl Oligopeptidase from the Mushroom Conocybe albipes* , 2009, The Journal of Biological Chemistry.

[9]  H. Naegeli,et al.  Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. , 2009, Journal of the American Chemical Society.

[10]  Reena Halai,et al.  Conotoxins: natural product drug leads. , 2009, Natural product reports.

[11]  M. Donia,et al.  Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. , 2009, Natural product reports.

[12]  W. Kelly,et al.  Thiostrepton biosynthesis: prototype for a new family of bacteriocins. , 2009, Journal of the American Chemical Society.

[13]  B. Shen,et al.  Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. , 2009, Chemistry & biology.

[14]  M. Fischbach,et al.  Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin , 2009, Proceedings of the National Academy of Sciences.

[15]  R. Nussinov,et al.  Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control , 2009, Physical biology.

[16]  E. Schmidt,et al.  Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. , 2009, Journal of the American Chemical Society.

[17]  M. Dawson,et al.  Chapter 22. Whole-cell generation of lantibiotic variants. , 2009, Methods in enzymology.

[18]  T. Hemscheidt,et al.  Post‐translational Modification in Microviridin Biosynthesis , 2008, Chembiochem : a European journal of chemical biology.

[19]  E. Dittmann,et al.  Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. , 2008, Angewandte Chemie.

[20]  R. Ebright,et al.  Systematic Structure-Activity Analysis of Microcin J25* , 2008, Journal of Biological Chemistry.

[21]  C. Hill,et al.  Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes , 2008, PLoS pathogens.

[22]  W. Donk,et al.  In vitro reconstitution and substrate specificity of a lantibiotic protease. , 2008, Biochemistry.

[23]  R. P. Ross,et al.  The generation of nisin variants with enhanced activity against specific Gram‐positive pathogens , 2008, Molecular microbiology.

[24]  W. A. van der Donk,et al.  The importance of the leader sequence for directing lanthionine formation in lacticin 481. , 2008, Biochemistry.

[25]  W. A. van der Donk,et al.  Use of lantibiotic synthetases for the preparation of bioactive constrained peptides. , 2008, Bioorganic & medicinal chemistry letters.

[26]  J. Ravel,et al.  A global assembly line for cyanobactins. , 2008, Nature chemical biology.

[27]  Pieter C Dorrestein,et al.  Discovery of a widely distributed toxin biosynthetic gene cluster , 2008, Proceedings of the National Academy of Sciences.

[28]  E. Dittmann,et al.  Microcyclamide Biosynthesis in Two Strains of Microcystis aeruginosa: from Structure to Genes and Vice Versa , 2008, Applied and Environmental Microbiology.

[29]  G. Bulaj,et al.  Role of hydroxyprolines in the in vitro oxidative folding and biological activity of conotoxins. , 2008, Biochemistry.

[30]  M. Trabi,et al.  Distribution and Evolution of Circular Miniproteins in Flowering Plants , 2008 .

[31]  M. Martínez-Bueno,et al.  Genetic features of circular bacteriocins produced by Gram-positive bacteria. , 2008, FEMS microbiology reviews.

[32]  O. Kuipers,et al.  Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin , 2008, Cellular and Molecular Life Sciences.

[33]  Hong Luo,et al.  Gene family encoding the major toxins of lethal Amanita mushrooms , 2007, Proceedings of the National Academy of Sciences.

[34]  M. Fischbach,et al.  Biosynthetic tailoring of microcin E492m: post-translational modification affords an antibacterial siderophore-peptide conjugate. , 2007, Journal of the American Chemical Society.

[35]  O. Kuipers,et al.  NisC, the cyclase of the lantibiotic nisin, can catalyze cyclization of designed nonlantibiotic peptides. , 2007, Biochemistry.

[36]  Marilyn A. Anderson,et al.  An Asparaginyl Endopeptidase Mediates in Vivo Protein Backbone Cyclization* , 2007, Journal of Biological Chemistry.

[37]  J. Willey,et al.  Lantibiotics: peptides of diverse structure and function. , 2007, Annual review of microbiology.

[38]  S. Duquesne,et al.  Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. , 2007, Chemistry & biology.

[39]  S. Duquesne,et al.  Microcins, gene-encoded antibacterial peptides from enterobacteria. , 2007, Natural product reports.

[40]  R. P. Ross,et al.  Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. , 2007, FEMS microbiology letters.

[41]  O. Kuipers,et al.  Production of Dehydroamino Acid-Containing Peptides by Lactococcus lactis , 2007, Applied and Environmental Microbiology.

[42]  W. A. van der Donk,et al.  The leader peptide is not required for post-translational modification by lacticin 481 synthetase. , 2007, Journal of the American Chemical Society.

[43]  Jacques Ravel,et al.  Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians , 2006, Nature chemical biology.

[44]  Neil L. Kelleher,et al.  Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic , 2006, Proceedings of the National Academy of Sciences.

[45]  R. P. Ross,et al.  Complete alanine scanning of the two‐component lantibiotic lacticin 3147: generating a blueprint for rational drug design , 2006, Molecular microbiology.

[46]  W. A. van der Donk,et al.  Engineering dehydro amino acids and thioethers into peptides using lacticin 481 synthetase. , 2006, Chemistry & biology.

[47]  Peter Roepstorff,et al.  Novel γ‐carboxyglutamic acid‐containing peptides from the venom of Conus textile , 2006, The FEBS journal.

[48]  S. Nair,et al.  Structure and Mechanism of the Lantibiotic Cyclase Involved in Nisin Biosynthesis , 2006, Science.

[49]  Y. Igarashi,et al.  Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. , 2005, Microbiology.

[50]  G. Bulaj,et al.  Conotoxins and the posttranslational modification of secreted gene products , 2005, Cellular and Molecular Life Sciences CMLS.

[51]  Rolf Müller,et al.  The impact of bacterial genomics on natural product research. , 2005, Angewandte Chemie.

[52]  P. Long,et al.  Shotgun Cloning and Heterologous Expression of the Patellamide Gene Cluster as a Strategy to Achieving Sustained Metabolite Production , 2005, Chembiochem : a European journal of chemical biology.

[53]  O. Kuipers,et al.  Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin. , 2005, Biochemistry.

[54]  W. A. van der Donk,et al.  Biosynthesis and mode of action of lantibiotics. , 2005, Chemical reviews.

[55]  D. Dubnau,et al.  Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX , 2005, Nature chemical biology.

[56]  Peter Roepstorff,et al.  Precursors of novel Gla-containing conotoxins contain a carboxy-terminal recognition site that directs gamma-carboxylation. , 2005, Biochemistry.

[57]  J. Eisen,et al.  Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Fields,et al.  Polypeptide chains containing D-gamma-hydroxyvaline. , 2005, Journal of the American Chemical Society.

[59]  Y. Igarashi,et al.  Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp . TPA 0584 , 2005 .

[60]  G. Bulaj Formation of disulfide bonds in proteins and peptides. , 2005, Biotechnology advances.

[61]  M. Bagley,et al.  Thiopeptide antibiotics. , 2005, Chemical reviews.

[62]  Marilyn A. Anderson,et al.  Conserved Structural and Sequence Elements Implicated in the Processing of Gene-encoded Circular Proteins* , 2004, Journal of Biological Chemistry.

[63]  J. Tabet,et al.  Siderophore Peptide, a New Type of Post-translationally Modified Antibacterial Peptide with Potent Activity* , 2004, Journal of Biological Chemistry.

[64]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[65]  O. Kuipers,et al.  NisT, the Transporter of the Lantibiotic Nisin, Can Transport Fully Modified, Dehydrated, and Unmodified Prenisin and Fusions of the Leader Peptide with Non-lantibiotic Peptides* , 2004, Journal of Biological Chemistry.

[66]  G. Ji,et al.  Membrane Anchoring of the AgrD N-terminal Amphipathic Region Is Required for Its Processing to Produce a Quorum-sensing Pheromone in Staphylococcus aureus* , 2004, Journal of Biological Chemistry.

[67]  David S Wishart,et al.  NMR solution structure of the precursor for carnobacteriocin B2, an antimicrobial peptide from Carnobacterium piscicola. , 2004, European journal of biochemistry.

[68]  N. Kelleher,et al.  Lacticin 481: In Vitro Reconstitution of Lantibiotic Synthetase Activity , 2004, Science.

[69]  G. Bulaj,et al.  Propeptide does not act as an intramolecular chaperone but facilitates protein disulfide isomerase-assisted folding of a conotoxin precursor. , 2004, Biochemistry.

[70]  W. M. Vos,et al.  Protein engineering of lantibiotics , 1996, Antonie van Leeuwenhoek.

[71]  Shane T. Jensen,et al.  The Spo0A regulon of Bacillus subtilis , 2003, Molecular microbiology.

[72]  G. Bulaj,et al.  Efficient oxidative folding of conotoxins and the radiation of venomous cone snails , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Ulf Göransson,et al.  Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. , 2003, Journal of the American Chemical Society.

[74]  B. Chait,et al.  Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. , 2003, Journal of the American Chemical Society.

[75]  G. Montelione,et al.  Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. , 2003, Journal of the American Chemical Society.

[76]  R. Lewis,et al.  Isolation and Characterization of a Cone Snail Protease with Homology to CRISP Proteins of the Pathogenesis-related Protein Superfamily* , 2003, Journal of Biological Chemistry.

[77]  J. Vederas,et al.  Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine. , 2003, Journal of the American Chemical Society.

[78]  Clement Waine,et al.  Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  C. Walsh,et al.  In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  F. Qi,et al.  Effect of amino acid substitutions in conserved residues in the leader peptide on biosynthesis of the lantibiotic mutacin II. , 2001, FEMS microbiology letters.

[81]  V. Nizet,et al.  Genetic Locus for Streptolysin S Production by Group A Streptococcus , 2000, Infection and Immunity.

[82]  J. Vederas,et al.  Genes of the sbo-alb Locus ofBacillus subtilis Are Required for Production of the Antilisterial Bacteriocin Subtilosin , 1999, Journal of bacteriology.

[83]  N. Kelleher,et al.  Posttranslational heterocyclization of cysteine and serine residues in the antibiotic microcin B17: distributivity and directionality. , 1999, Biochemistry.

[84]  B. Olivera,et al.  Post-translationally modified neuropeptides from Conus venoms. , 1999, European journal of biochemistry.

[85]  B. Olivera,et al.  Speciation of Cone Snails and Interspecific Hyperdivergence of Their Venom Peptides: Potential Evolutionary Significance of Introns a , 1999, Annals of the New York Academy of Sciences.

[86]  N. Kelleher,et al.  In vivo processing and antibiotic activity of microcin B17 analogs with varying ring content and altered bisheterocyclic sites. , 1999, Chemistry & biology.

[87]  N. Kelleher,et al.  Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17. , 1999, Biochemistry.

[88]  C. Walsh,et al.  Role of the microcin B17 propeptide in substrate recognition: solution structure and mutational analysis of McbA1-26. , 1998, Chemistry & biology.

[89]  B. Olivera,et al.  Conantokin-G Precursor and Its Role in γ-Carboxylation by a Vitamin K-dependent Carboxylase from a ConusSnail* , 1998, The Journal of Biological Chemistry.

[90]  C. Walsh,et al.  Mutational analysis of posttranslational heterocycle biosynthesis in the gyrase inhibitor microcin B17: distance dependence from propeptide and tolerance for substitution in a GSCG cyclizable sequence. , 1998, Biochemistry.

[91]  J. Tommassen,et al.  Function of bacterial propeptides. , 1998, Trends in microbiology.

[92]  Structural features of the final intermediate in the biosynthesis of the lantibiotic nisin. Influence of the leader peptide. , 1997, Biochemistry.

[93]  J. Hansen,et al.  Use of alkaline phosphatase as a reporter polypeptide to study the role of the subtilin leader segment and the SpaT transporter in the posttranslational modifications and secretion of subtilin in Bacillus subtilis 168 , 1997, Applied and environmental microbiology.

[94]  J. Rivier,et al.  A Novel Post-translational Modification Involving Bromination of Tryptophan , 1997, The Journal of Biological Chemistry.

[95]  R. Kolter,et al.  The leader peptide is essential for the post‐translational modification of the DNA‐gyrase inhibitor microcin B17 , 1997, Molecular microbiology.

[96]  R. Kolter,et al.  From Peptide Precursors to Oxazole and Thiazole-Containing Peptide Antibiotics: Microcin B17 Synthase , 1996, Science.

[97]  M. Delepierre,et al.  Chemical Structure and Translation Inhibition Studies of the Antibiotic Microcin C7 (*) , 1995, The Journal of Biological Chemistry.

[98]  W. D. de Vos,et al.  Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering , 1995, Applied and environmental microbiology.

[99]  I. Nes,et al.  The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. , 1994, Microbiology.

[100]  W. D. de Vos,et al.  Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. , 1994, The Journal of biological chemistry.

[101]  G. Jung,et al.  Posttranslational Backbone Modifications in the Ribosomal Biosynthesis of the Glycine‐Rich Antibiotic Microcin B17 , 1993 .

[102]  R. Kolter,et al.  The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase , 1993, Molecular microbiology.

[103]  J. Hansen,et al.  Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. , 1992, The Journal of biological chemistry.

[104]  S. Woodward,et al.  Constant and hypervariable regions in conotoxin propeptides. , 1990, The EMBO journal.

[105]  J. McIntosh,et al.  Gamma-carboxyglutamate in a neuroactive toxin. , 1984, The Journal of biological chemistry.