Dense Message Passing for Sparse Principal Component Analysis

We describe a novel inference algorithm for sparse Bayesian PCA with a zero-norm prior on the model parameters. Bayesian inference is very challenging in probabilistic models of this type. MCMC procedures are too slow to be practical in a very high-dimensional setting and standard mean-field variational Bayes algorithms are ineffective. We adopt a dense message passing algorithm similar to algorithms developed in the statistical physics community and previously applied to inference problems in coding and sparse classification. The algorithm achieves nearoptimal performance on synthetic data for which a statistical mechanics theory of optimal learning can be derived. We also study two gene expression datasets used in previous studies of sparse PCA. We find our method performs better than one published algorithm and comparably to a second.

[1]  Yoshiyuki Kabashima,et al.  Statistical Mechanical Development of a Sparse Bayesian Classifier , 2005 .

[2]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.

[3]  James G. Scott,et al.  Handling Sparsity via the Horseshoe , 2009, AISTATS.

[4]  Magnus Rattray,et al.  Inference algorithms and learning theory for Bayesian sparse factor analysis , 2009 .

[5]  David P. Wipf,et al.  A New View of Automatic Relevance Determination , 2007, NIPS.

[6]  Geert Jan Bex,et al.  A Gaussian scenario for unsupervised learning , 1996 .

[7]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[9]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[10]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[11]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[12]  Chiara Sabatti,et al.  Bayesian sparse hidden components analysis for transcription regulation networks , 2005, Bioinform..

[13]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[14]  Jennifer G. Dy,et al.  Sparse Probabilistic Principal Component Analysis , 2009, AISTATS.

[15]  Lorenz Wernisch,et al.  Factor analysis for gene regulatory networks and transcription factor activity profiles , 2007, BMC Bioinformatics.

[16]  Francis R. Bach,et al.  Sparse probabilistic projections , 2008, NIPS.

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[18]  M. West,et al.  High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.

[19]  Peter M. Williams,et al.  Bayesian Regularization and Pruning Using a Laplace Prior , 1995, Neural Computation.

[20]  Joachim M. Buhmann,et al.  Expectation-maximization for sparse and non-negative PCA , 2008, ICML '08.

[21]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[22]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .