Formation of nanoscale liquid menisci in electric fields

Nanometer-sized menisci of polar and nonpolar liquids are used to confine chemical reactions. Electric fields applied between two surfaces a few nanometers apart allow the formation and manipulation of three-dimensional nanoscale liquid bridges. At low fields, two stable shapes coexist: one represents a small liquid protrusion underneath the strongest field lines while the other is a nanoscale liquid contact bridging both surfaces. The formation of a nanoscale liquid meniscus requires the application of a threshold voltage to overcome the energy barrier between stable configurations. The bridge formation is accompanied by a drastic reduction of the electrical field at the solid-liquid interface.

[1]  R. Reichelt,et al.  Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy , 1998 .

[2]  Jacob N Israelachvili,et al.  Evaporation and instabilities of microscopic capillary bridges , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. J. Sáenz,et al.  Image charge method for electrostatic calculations in field‐emission diodes , 1996 .

[4]  Christian Teichert,et al.  Modification and characterization of thin silicon gate oxides using conducting atomic force microscopy , 2003 .

[5]  B. Berge,et al.  Electrowetting : a recent outbreak , 2001 .

[6]  Generating an etch resistant "resist" layer from common solvents using scanning probe lithography in a fluid cell. , 2005, Nano letters.

[7]  J. Dagata,et al.  Current, charge, and capacitance during scanning probe oxidation of silicon. II: Electrostatic and meniscus forces acting on cantilever bending , 2004 .

[8]  A. M. Baró,et al.  Electrostatic and contact forces in force microscopy , 1991 .

[9]  Reinhard Lipowsky,et al.  Wetting morphologies at microstructured surfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  L. Gregoratti,et al.  Bottom–Up Fabrication of Carbon‐Rich Silicon Carbide Nanowires by Manipulation of Nanometer‐Sized Ethanol Menisci , 2005 .

[11]  Jan M. van Ruitenbeek,et al.  Quantum properties of atomic-sized conductors , 2002, cond-mat/0208239.

[12]  M. Hersam,et al.  Conductive atomic force microscope nanopatterning of hydrogen-passivated silicon in inert organic solvents. , 2005, Nano letters.

[13]  Ulrich S Schubert,et al.  Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. , 2004, Angewandte Chemie.

[14]  J. H. Cushman,et al.  Capillary Condensation and Snap-off in Nanoscale Contacts , 2001 .

[15]  Erol Sancaktar,et al.  Electrostatic nanolithography in polymers using atomic force microscopy , 2003, Nature materials.

[16]  Chenguang Lu,et al.  Site-specific fabrication of nanoscale heterostructures: local chemical modification of GaN nanowires using electrochemical dip-pen nanolithography. , 2004, Journal of the American Chemical Society.

[17]  H. Y. Chen,et al.  Silicon microlens structures fabricated by scanning-probe gray-scale oxidation. , 2005, Optics letters.

[18]  G. Ewing Thin Film Water , 2004 .

[19]  M. Ratner,et al.  Capillary force in atomic force microscopy. , 2004, The Journal of chemical physics.

[20]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[21]  Ricardo Garcia,et al.  Nanolithography based on the formation and manipulation of nanometer-size organic liquid menisci. , 2005, Nano letters.

[22]  S. Hoeppener,et al.  Constructive Microlithography: Electrochemical Printing of Monolayer Template Patterns Extends Constructive Nanolithography to the Micrometer−Millimeter Dimension Range , 2003 .

[23]  Ricardo Garcia,et al.  Size determination of field-induced water menisci in noncontact atomic force microscopy , 2002 .

[24]  T. Ihn,et al.  Energy spectra of quantum rings , 2001, Nature.

[25]  J. Israelachvili Intermolecular and surface forces , 1985 .

[26]  F. Biscarini,et al.  Nanostructuring Conjugated Materials by Lithographically Controlled Wetting , 2003 .

[27]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[28]  S. Herminghaus,et al.  Self-excited oscillatory dynamics of capillary bridges in electric fields , 2003 .

[29]  M. Scheffler,et al.  Adatom kinetics on and below the surface: the existence of a new diffusion channel. , 2003, Physical review letters.