Recognition of Object Classes from Range Data

Abstract We develop techniques for recognizing instances of 3D object classes (which may consist of multiple and/or repeated sub-parts with internal degrees of freedom, linked by parameterized transformations), from sets of 3D feature observations. Recognition of a class instance is structured as a search of an interpretation tree in which geometric constraints on pairs of sensed features not only prune the tree, but are used to determine upper and lower bounds on the model parameter values of the instance. A real-valued constraint propagation network unifies the representations of the model parameters, model constraints and feature constraints, and provides a simple and effective mechanism for accessing and updating parameter values. Recognition of objects with multiple internal degrees of freedom, including non-uniform scaling and stretching, articulations, and sub-part repetitions, is demonstrated and analysed for two different types of real range data: 3D edge fragments from a stereo vision system, and position/surface normal data derived from planar patches extracted from a range image.

[1]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  W. Eric L. Grimson,et al.  Localizing Overlapping Parts by Searching the Interpretation Tree , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Marc H. Raibert,et al.  Running With Symmetry , 1986 .

[4]  John Porrill,et al.  Matching geometrical descriptions in three-space , 1987, Image Vis. Comput..

[5]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[6]  Chris Goad,et al.  Special purpose automatic programming for 3D model-based vision , 1987 .

[7]  G. T. Reid,et al.  A laser scanning camera for range data acquisition , 1988 .

[8]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[9]  W. Grimson,et al.  Model-Based Recognition and Localization from Sparse Range or Tactile Data , 1984 .

[10]  D. W. Thompson,et al.  Three-dimensional model matching from an unconstrained viewpoint , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[11]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[12]  Ian D. Reid,et al.  Recognition of parameterized objects from 3D data: a parallel implementation , 1994, Image Vis. Comput..

[13]  Ian D. Reid,et al.  Model-based recognition and range imaging for a guided vehicle , 1992, Image Vis. Comput..

[14]  Patrick Henry Winston,et al.  The psychology of computer vision , 1976, Pattern Recognit..

[15]  Tomás Lozano-Pérez,et al.  Tactile Recognition and Localization Using Object Models: The Case of Polyhedra on a Plane , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Shinji Umeyama Parameterized Point Pattern Matching and Its Application to Recognition of Object Families , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Gil J. Ettinger,et al.  Large hierarchical object recognition using libraries of parameterized model sub-parts , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Robert B. Fisher,et al.  Geometric Reasoning in a Parallel Network , 1991, Int. J. Robotics Res..

[19]  Avinash C. Kak,et al.  A robot vision system for recognizing 3D objects in low-order polynomial time , 1989, IEEE Trans. Syst. Man Cybern..

[20]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[21]  Robert B. Fisher,et al.  Solving Geometric Constraints in a Parallel Network , 1987, Alvey Vision Conference.

[22]  Anil K. Jain,et al.  BONSAI: 3D object recognition using constrained search , 1990, ICCV.

[23]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[24]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[25]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  J.C.H. Phang,et al.  Electron trajectory tracking algorithms for analysing voltage contrast signals in the scanning electron microscope , 1988 .

[27]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[28]  Robert B. Fisher From Surfaces to Objects: Computer Vision and Three Dimensional Scene Analysis , 1989 .

[29]  John Hallam,et al.  Computing with Uncertainty: Intervals versus Probabilities , 1991 .

[30]  Rodney A. Brooks,et al.  Symbolic Error Analysis and Robot Planning , 1982 .

[31]  O. Firschein,et al.  BookProceedings: Image Understanding Workshop: Morgan Kaufmann (1987) 1000 pp (2 volumes) £36.00 , 1988 .

[32]  Robert C. Bolles,et al.  3DPO: A Three- Dimensional Part Orientation System , 1986, IJCAI.

[33]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .