High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics.

Entangled photon pair sources based on bulk optics are approaching optimal design and implementation, with high state fidelities, spectral purities and heralding efficiencies, but generally low brightness. Integrated entanglement sources, while providing higher brightness and low-power operation, often sacrifice performance in output state quality and coupling efficiency. Here we present a polarization-entangled pair source based on a hybrid approach of waveguiding and bulk optics, addressing every metric simultaneously. We show 96 % fidelity to the singlet state, 82 % Hong-Ou-Mandel interference visibility, 43 % average Klyshko efficiency, and a high brightness of 2.9 × 106 pairs/(mode·s·mW), while requiring only microwatts of pump power.

[1]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[2]  Massimiliano Proietti,et al.  Independent high-purity photons created in domain-engineered crystals , 2017, 1712.07140.

[3]  H. Zbinden,et al.  High efficiency coupling of photon pairs in practice. , 2013, Optics express.

[4]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[5]  Jörn Beyer,et al.  Highly efficient heralding of entangled single photons. , 2012, Optics express.

[6]  Taehyun Kim,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[7]  Alan L. Migdall,et al.  Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs , 2007 .

[8]  Christian Kurtsiefer,et al.  Approaching Tsirelson's Bound in a Photon Pair Experiment. , 2015, Physical review letters.

[9]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[10]  John E. Sipe,et al.  How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices , 2012 .

[11]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[12]  Ryan S. Bennink,et al.  Spatial entanglement and optimal single-mode coupling , 2011 .

[13]  Qin Wang,et al.  Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources , 2013, 1305.6480.

[14]  Ryan S. Bennink,et al.  Optimal collinear Gaussian beams for spontaneous parametric down-conversion , 2010, 1003.3810.

[15]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[16]  Wei Zhang,et al.  Quantum teleportation with independent sources and prior entanglement distribution over a network , 2016, Nature Photonics.

[17]  Thomas Jennewein,et al.  Generating polarization-entangled photon pairs using cross-spliced birefringent fibers. , 2012, Optics express.

[18]  Jeffrey H Shapiro,et al.  Spectral engineering by Gaussian phase-matching for quantum photonics. , 2013, Optics express.

[19]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[20]  Cott,et al.  High-performance source of spectrally pure , polarization entangled photon pairs based on hybrid integrated-bulk optics , 2018 .

[21]  R. Thew,et al.  Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths. , 2014, Optics express.

[22]  Wei Zhang,et al.  Entanglement swapping with independent sources over an optical-fiber network , 2016, 1606.07503.

[23]  G. H. Aguilar,et al.  Quantum teleportation across a metropolitan fibre network , 2016, Nature Photonics.

[24]  Christine Silberhorn,et al.  High-performance single-photon generation with commercial-grade optical fiber , 2010, 1012.1821.

[25]  Li Qian,et al.  Compensation-free broadband entangled photon pair sources. , 2017, Optics express.

[26]  Marco Genovese,et al.  Generation of different Bell states within the spontaneous parametric down-conversion phase-matching bandwidth , 2007 .

[27]  Christine Silberhorn,et al.  Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources , 2017, 1702.05501.

[28]  Christine Silberhorn,et al.  High-Efficiency Plug-and-Play Source of Heralded Single Photons , 2017, 1701.04229.

[29]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[30]  John M. Robinson,et al.  1.5 μm lasers with sub 10 mHz linewidth , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[31]  Christine Silberhorn,et al.  Heralded generation of ultrafast single photons in pure quantum States. , 2007, Physical review letters.

[32]  A. Gulinatti,et al.  Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality , 2015, Scientific Reports.

[33]  Eleni Diamanti,et al.  Multi-user quantum key distribution with entangled photons from an AlGaAs chip , 2016, 1607.01693.

[34]  K. Laiho,et al.  Spatial modes in waveguided parametric down-conversion , 2009, 0904.4668.

[35]  I. Walmsley,et al.  Spectral information and distinguishability in type-II down-conversion with a broadband pump , 1997 .

[36]  Jeffrey H. Shapiro,et al.  Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints , 2004 .

[37]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[38]  C. Silberhorn,et al.  Fibre assisted single photon spectrograph , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[39]  R. Ursin,et al.  Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO 4 , 2014 .

[40]  Daniel Ljunggren,et al.  Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers , 2005 .

[41]  Barry C. Sanders,et al.  Entanglement-enhanced quantum metrology in a noisy environment , 2017, 1707.08790.

[42]  Sunao Kurimura,et al.  Joint temporal density measurements for two-photon state characterization. , 2008, Physical review letters.

[43]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[44]  Hiroshi Fukuda,et al.  Generation of polarization entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[45]  R. Ursin,et al.  Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference. , 2018, Physical review letters.

[46]  Miao Huang,et al.  Observation of ten-photon entanglement using thin BiB 3 O 6 crystals , 2016, CLEO 2017.

[47]  A. Valencia,et al.  Correlation control for pure and efficiently generated heralded single photons , 2014, 1410.1936.

[48]  Peter J. Mosley,et al.  All-fiber multiplexed source of high-purity single photons , 2016 .

[49]  Matthew E. Grein,et al.  Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs , 2014, 1407.8487.

[50]  Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide. , 2008, Optics express.

[51]  Masahide Sasaki,et al.  Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[52]  D. Klyshko,et al.  Use of two-photon light for absolute calibration of photoelectric detectors , 1980 .

[53]  M. Chekhova,et al.  Generation and direct detection of broadband mesoscopic polarization-squeezed vacuum. , 2009, Physical review letters.

[54]  Christine Silberhorn,et al.  Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs. , 2013, Optics express.

[55]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[56]  S. Arahira,et al.  Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide. , 2011, Optics express.

[57]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[58]  Rupert Ursin,et al.  Feasibility of 300 km quantum key distribution with entangled states , 2009, 1007.4645.

[59]  O. Schmidt,et al.  Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots , 2016, Nature Communications.

[60]  Masato Koashi,et al.  High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources , 2016, Scientific Reports.

[61]  G. Guo,et al.  Generation of multiphoton entangled quantum states with a single silicon nanowire , 2018, 1803.01641.

[62]  Yin-Hai Li,et al.  On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire , 2017 .

[63]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[64]  V. Quiring,et al.  A two-channel, spectrally degenerate polarization entangled source on chip , 2016, 1604.03430.

[65]  Edo Waks,et al.  Ultra-bright source of polarization-entangled photons , 1999 .

[66]  Sae Woo Nam,et al.  Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths. , 2011, Optics express.

[67]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[68]  Akihisa Tomita,et al.  Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer , 2004 .

[69]  C. Silberhorn,et al.  Highly efficient single-pass source of pulsed single-mode twin beams of light. , 2010, Physical review letters.

[70]  Andreas Christ,et al.  Highly efficient single-pass source of pulsed single-mode twin beams of light. , 2011, Physical review letters.

[71]  T. Legero,et al.  1.5 μm lasers with sub 10 mHz linewidth , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[72]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[73]  R. Bennink,et al.  Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission. , 2010, Physical review letters.

[74]  Christine Silberhorn,et al.  Polarization squeezing and continuous-variable polarization entanglement , 2002 .

[75]  Marco Fiorentino,et al.  Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. , 2007, Optics express.

[76]  M. Chekhova,et al.  Polarization-entangled light pulses of 10(5) photons. , 2011, Physical review letters.

[77]  Panagiotis Vergyris,et al.  Fully guided-wave photon pair source for quantum applications , 2017, 1704.00639.

[78]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[79]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[80]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[81]  Fumihiro Kaneda,et al.  Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion. , 2016, Optics express.

[82]  R. Thew,et al.  On the purity and indistinguishability of down-converted photons , 2012, 1211.0120.

[83]  V. Verma,et al.  Unconditional violation of the shot-noise limit in photonic quantum metrology , 2017, 1707.08977.

[84]  Sabine Wollmann,et al.  Efficient and pure femtosecond-pulse-length source of polarization-entangled photons. , 2016, Optics express.

[85]  J. Sipe,et al.  Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography. , 2016, Optics express.

[86]  Simone Atzeni,et al.  Integrated sources of entangled photons at telecom wavelength in femtosecond-laser-written circuits , 2017, 1710.09618.

[87]  F. Bussières,et al.  A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons , 2014, 1405.6486.

[88]  Andrew G. White,et al.  Engineered optical nonlinearity for quantum light sources. , 2010, Optics express.

[89]  Guang-Can Guo,et al.  On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement. , 2018, Optics express.