Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review

In recent research, there has been a growing interest in the analysis of flow through microdiffusers and micropumps in order to characterize and optimize the performance of these devices. In this review, the recent advances in the numerical and experimental analysis of the steady and pulsating flows through microdiffusers and valveless micropumps are surveyed. The differences between the performance of microdiffusers and micropumps in steady and unsteady flow regimes are described. Qualitative and quantitative discussions of the effects of different design parameters on the performance of microdiffusers and valveless micropumps in both steady and unsteady flow regimes along with the contradictory results reported in the literature in this regard are provided. In addition, a summary of the latest micropump technologies along with the advantages and disadvantages of each mechanism with the emphasis on the innovative and less-reviewed micropumps are presented. Two important types of fixed microvalves, as part of valveless micropumps are described in details. Experimental flow visualization of steady and pulsating flows through microdiffusers and micropumps as a useful tool for better understanding the underlying micro-fluid dynamics is discussed. The present review reveals that there are many possible areas of research in the field of steady and unsteady flows through microdiffusers and micropumps in order to understand the effects of all important design parameters on the performance of these devices.

[1]  Yong-Gu Lee,et al.  Flow characterization of valveless micropump using driving equivalent moment: theory and experiments , 2008 .

[2]  Hideo Yoshida The wide variety of possible applications of micro-thermofluid control , 2005 .

[3]  S. Kalams,et al.  On-chip counting the number and the percentage of CD4+ T lymphocytes. , 2008, Lab on a chip.

[4]  Hiroshi Tsukamoto,et al.  Development of Diffuser/Nozzle Based Valveless Micropump , 2008 .

[5]  Guojun Liu,et al.  A PZT insulin pump integrated with a silicon micro needle array for transdermal drug delivery , 2006, ECTC 2006.

[6]  Jung-Ho Park,et al.  Resonantly driven piezoelectric micropump: Fabrication of a micropump having high power density , 1999 .

[7]  Yi Chun Wang,et al.  Loss characteristics and flow rectification property of diffuser valves for micropump applications , 2009 .

[8]  R. Pal,et al.  Phase change microvalve for integrated devices. , 2004, Analytical chemistry.

[9]  P. Dario,et al.  Micro-systems in biomedical applications , 2000 .

[10]  Dong Liu,et al.  On-Chip Thermal Management With Microchannel Heat Sinks and Integrated Micropumps , 2006, Proceedings of the IEEE.

[11]  Yousef Haik,et al.  Flow field analysis in a spiral viscous micropump , 2007 .

[12]  Jürgen Brugger,et al.  The gas flow rate increase obtained by an oscillating piezoelectric actuator on a micronozzle , 2008 .

[13]  Larry Chew,et al.  Geometry-based macro-tool evaluation of non-moving-part valvular microchannels , 2002 .

[14]  Christopher J. Morris,et al.  Low-order modeling of resonance for fixed-valve micropumps based on first principles , 2003 .

[15]  Mohamed Gad-el-Hak,et al.  A Novel Pump for MEMS Applications , 1996 .

[16]  Anders Olsson,et al.  Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps , 2000 .

[17]  T. Y. Ng,et al.  Analytical solutions for the dynamic analysis of a valveless micropump — a fluid–membrane coupling study , 2001 .

[18]  Kyihwan Park,et al.  Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment , 2002 .

[19]  M. Gijs,et al.  A ball valve micropump in glass fabricated by powder blasting , 2005 .

[20]  Horn-Jiunn Sheen,et al.  A microfluidic flow-converter based on a double-chamber planar micropump , 2009 .

[21]  J. Dargahi,et al.  A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation , 2007 .

[22]  Yael Nemirovsky,et al.  A membrane micropump electrostatically actuated across the working fluid , 2005 .

[23]  L S Pan,et al.  CFD Simulations of Flows in Valveless Micropumps , 2007 .

[24]  A. Fatih Tabak,et al.  Numerical simulations and analysis of a micropump actuated by traveling plane waves , 2007, SPIE MOEMS-MEMS.

[25]  Christian Druon,et al.  SAW nanopump for handling droplets in view of biological applications , 2006 .

[26]  Dhiman Chatterjee,et al.  Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling , 2009 .

[27]  Gwo-Bin Lee,et al.  A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure , 2009 .

[28]  Kensall D. Wise,et al.  A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing , 2003 .

[29]  Masayoshi Esashi,et al.  Microflow devices and systems , 1994 .

[30]  Chang Nyung Kim,et al.  A numerical simulation on diffuser‐nozzle based piezoelectric micropumps with two different numerical models , 2007 .

[31]  K. Tsiakmakis,et al.  Model reference adaptive control for an ionic polymer metal composite in underwater applications , 2008 .

[32]  Fabio Beltram,et al.  Acoustic-counterflow microfluidics by surface acoustic waves , 2008 .

[33]  Dongqing Li,et al.  Electroosmotic flow at a liquid–air interface , 2006 .

[34]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[35]  Shoji Maruo,et al.  Optically driven viscous micropump using a rotating microdisk , 2007 .

[36]  Richard B. Fair,et al.  Digital microfluidics: is a true lab-on-a-chip possible? , 2007 .

[37]  Bo Li,et al.  Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps , 2005 .

[38]  D. Hlushkou,et al.  Electrohydrodynamics around single ion-permselective glass beads fixed in a microfluidic device , 2008 .

[39]  Christopher J. Morris,et al.  Optimization of a circular piezoelectric bimorph for a micropump driver , 2000 .

[40]  Shung-Wen Kang,et al.  Fabrication and investigation of PDMS micro-diffuser/nozzle , 2008 .

[41]  Arthur Brunnschweiler,et al.  The dynamic micropump driven with a screen printed PZT actuator , 1998 .

[42]  Dongqing Li,et al.  Flow characteristics of water in microtubes , 1999 .

[43]  David Sinton,et al.  Microscale flow visualization , 2004 .

[44]  Yong Qing Fu,et al.  Surface acoustic wave induced streaming and pumping in 128° Y-cut LiNbO3 for microfluidic applications , 2009 .

[45]  Hsueh-Chia Chang,et al.  Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping , 2005 .

[46]  Xiaoning Jiang,et al.  Micronozzle/diffuser flow and its application in micro valveless pumps , 1998 .

[47]  Longtu Li,et al.  Simulations and analysis of a piezoelectric micropump. , 2006, Ultrasonics.

[48]  Markus Böhm,et al.  A programmable planar electroosmotic micropump for lab-on-a-chip applications , 2008 .

[49]  Nesbitt W. Hagood,et al.  Fabrication of a high frequency piezoelectric microvalve , 2004 .

[50]  Brian K. Paul,et al.  Comparison of two passive microvalve designs for microlamination architectures , 2000 .

[51]  Mohammad Taghi Ahmadian,et al.  Performance of Valveless Diffuser Micropumps Under Harmonic Piezoelectric Actuation , 2006 .

[52]  H. Park,et al.  A reduced-order model of the low-voltage cascade electroosmotic micropump , 2009 .

[53]  Marcelo H. Kobayashi,et al.  Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption , 2007 .

[54]  D. Leo,et al.  Ionic liquids as stable solvents for ionic polymer transducers , 2004 .

[55]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[56]  Tzong-Shyng Leu,et al.  Unsteady Analysis of Microvalves With No Moving Parts , 2007 .

[57]  X. Peng,et al.  HEAT TRANSFER CHARACTERISTICS OF WATER FLOWING THROUGH MICROCHANNELS , 1994 .

[58]  Pascal Chesse,et al.  Inflow boundary condition for one-dimensional gas dynamics simulation code of internal combustion engine manifolds , 2009 .

[59]  S. Lee,et al.  Advanced particle-based velocimetry techniques for microscale flows , 2009 .

[60]  Javad Dargahi,et al.  A FOURTH-ORDER ACCURATE SCHEME FOR SOLVING ONE-DIMENSIONAL HIGHLY NONLINEAR STANDING WAVE EQUATION IN DIFFERENT THERMOVISCOUS FLUIDS , 2008 .

[61]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[62]  T Gerlach,et al.  A new micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves , 1995 .

[63]  Bo-Ren Chen,et al.  Development of an OAPCP-micropump liquid cooling system in a laptop , 2009 .

[64]  H.-P. Cheng,et al.  Ejection characteristics of micropumps for motorcycle fuel atomizer in high-temperature environment , 2008 .

[65]  Ming Yang,et al.  Development and evaluation of a micro chemical gas sensor with an inner-circulation diffuser pump , 2004 .

[66]  Gangbing Song,et al.  Simulation of a piezoelectrically actuated valveless micropump , 2005 .

[67]  M. Gijs,et al.  A PMMA valveless micropump using electromagnetic actuation , 2005 .

[68]  Mohamed Gad-el-Hak,et al.  Navier-Stokes Simulations of a Novel Viscous Pump , 1997 .

[69]  Kai-Shing Yang,et al.  Investigation of the flow characteristics within a micronozzle/diffuser , 2004 .

[70]  Guojun Liu,et al.  A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery , 2006, 56th Electronic Components and Technology Conference 2006.

[71]  S.D. Umans,et al.  An electrostatic, on/off microvalve designed for gas fuel delivery for the MIT microengine , 2004, Journal of Microelectromechanical Systems.

[72]  Junhui Hu,et al.  Ultrasonic microfluidic transportation based on a twisted bundle of thin metal wires , 2007 .

[73]  Göran Stemme,et al.  A valve-less planar fluid pump with two pump chambers , 1995 .

[74]  Maria Chiara Carrozza,et al.  A fluid handling system for a chemical microanalyzer , 1996 .

[75]  S. Yokota,et al.  Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments , 2002 .

[76]  Tao Zhang,et al.  Performance of miniaturized direct methanol fuel cell (DMFC) devices using micropump for fuel delivery , 2006 .

[77]  G. Stemme,et al.  A valveless diffuser/nozzle-based fluid pump , 1993 .

[78]  Yeng-Yung Tsui,et al.  Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses , 2008 .

[79]  Bo-Ren Hou,et al.  The improved performance of one-side actuating diaphragm micropump for a liquid cooling system , 2008 .

[80]  Chen-li Sun,et al.  Numerical characterization of the flow rectification of dynamic microdiffusers , 2006 .

[81]  Lothar Schmitt,et al.  Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves , 2007 .

[82]  T. Kenny,et al.  Closed-loop electroosmotic microchannel cooling system for VLSI circuits , 2002 .

[83]  David Erickson,et al.  Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices , 2005 .

[84]  Javad Dargahi,et al.  Analysis of the flow structure inside the valveless standing wave pump , 2008 .

[85]  Torsten Gerlach Microdiffusers as dynamic passive valves for micropump applications , 1998 .

[86]  D. Xing,et al.  Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. , 2007, Biotechnology advances.

[87]  Martin A. Afromowitz,et al.  DESIGN, FABRICATION AND TESTING OF FIXED-VALVE MICRO-PUMPS , 1995 .

[88]  M. Gijs,et al.  Plastic micropump with ferrofluidic actuation , 2005, Journal of Microelectromechanical Systems.

[89]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[90]  Yi-Chu Hsu,et al.  Development of peristaltic antithrombogenic micropumps for in vitro and ex vivo blood transportation tests , 2007 .

[91]  Tao Zhang,et al.  Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices , 2005 .

[92]  S. Abdel-Khalik,et al.  An experimental investigation of microchannel flow with internal pressure measurements , 2005 .

[93]  Takaaki Suzuki,et al.  Development of liquid pumping devices using vibrating microchannel walls , 2009 .

[94]  Peter Woias,et al.  Micropumps—past, progress and future prospects , 2005 .

[95]  Anders Olsson,et al.  The Valveless Diffuser Pump-A Numerical Design Study Using MATLAB , 1999 .

[96]  Peter Enoksson,et al.  A valve-less planar pump isotropically etched in silicon , 1996 .

[97]  Chen-li Sun,et al.  Effects of the half angle on the flow rectification of a microdiffuser , 2007 .

[98]  Chengliang Liu,et al.  Simulation and optimization of a piezoelectric micropump for medical applications , 2008 .

[99]  Mir Majid Teymoori,et al.  Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications , 2005 .

[100]  Y. Hsu,et al.  Equivalent electrical network for performance characterization of piezoelectric peristaltic micropump , 2009 .

[101]  Gwo-Bin Lee,et al.  Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform , 2009 .

[102]  Sam Kassegne,et al.  High-current density DC magenetohydrodynamics micropump with bubble isolation and release system , 2008 .

[103]  C. J. Hsu,et al.  Unsteady flow behaviors in an obstacle-type valveless micropump by micro-PIV , 2008 .

[104]  Hiroaki Suzuki,et al.  Integrated microfluidic system with electrochemically actuated on-chip pumps and valves , 2003 .

[105]  C. Schabmueller,et al.  Self-aligning gas/liquid micropump , 2002 .

[106]  Wolfgang Ehrfeld,et al.  Micro gear pumps for dosing of viscous fluids , 1997 .

[107]  L. Jang,et al.  Peristaltic piezoelectric micropump system for biomedical applications , 2007, Biomedical microdevices.

[108]  Suresh V. Garimella,et al.  Recent advances in microscale pumping technologies: a review and evaluation , 2008 .

[109]  S. Hsieh,et al.  Liquid flow in a micro-channel , 2006 .

[110]  Z Guttenberg,et al.  Flow profiling of a surface-acoustic-wave nanopump. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  Carsten Werner,et al.  Electroosmotic flow in microchannels with prismatic elements , 2007 .

[112]  X. Zha,et al.  Study on a piezoelectric micropump for the controlled drug delivery system , 2007 .

[113]  Jong-Hyun Lee,et al.  A novel micropump with fixed-geometry valves and low leakage flow , 2007 .

[114]  Chienliu Chang,et al.  Experimental study of flow characteristics and mixing performance in a PZT self-pumping micromixer , 2007 .

[115]  Yu Zhou,et al.  Current micropump technologies and their biomedical applications , 2009 .

[116]  Luc Mongeau,et al.  Numerical analysis of high frequency pulsating flows through a diffuser-nozzle element in valveless acoustic micropumps , 2009 .

[117]  Kan Junwu,et al.  Design and test of a high-performance piezoelectric micropump for drug delivery , 2005 .

[118]  Javad Dargahi,et al.  Simultaneous measurement of acoustic and streaming velocities using synchronized PIV technique , 2007 .

[119]  Sang Joon Lee Advanced Particle-Based Velocimetry Techniques for Microscale Flows , 2009 .

[120]  Anders Olsson,et al.  Diffuser-element design investigation for valve-less pumps , 1996 .

[121]  Ling-Sheng Jang,et al.  Peristaltic micropump system with piezoelectric actuators , 2007 .

[122]  Suresh V. Garimella,et al.  Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps , 2004 .

[123]  Peter Enoksson,et al.  A Valve-Less Diffuser Micropump for Microfluidic Analytical Systems , 2001 .