ArviZ a unified library for exploratory analysis of Bayesian models in Python
暂无分享,去创建一个
Osvaldo A. Martin | Ravin Kumar | Colin Carroll | Ari Hartikainen | O. A. Martin | Ari Hartikainen | Ravi Kumar | Colin Carroll
[1] Aki Vehtari,et al. Visualization in Bayesian workflow , 2017, Journal of the Royal Statistical Society: Series A (Statistics in Society).
[2] Sumio Watanabe,et al. A widely applicable Bayesian information criterion , 2012, J. Mach. Learn. Res..
[3] Aki Vehtari,et al. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.
[4] P. Diaconis. Theories of Data Analysis: From Magical Thinking Through Classical Statistics , 2011 .
[5] Paul F. Dubois,et al. Software for Portable Scientific Data Management , 1993 .
[6] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[7] Thomas A. Henzinger,et al. Probabilistic programming , 2014, FOSE.
[8] Stephan Hoyer,et al. xarray: N-D labeled arrays and datasets in Python , 2017 .
[9] Russ Rew,et al. NetCDF: an interface for scientific data access , 1990, IEEE Computer Graphics and Applications.
[10] Dustin Tran,et al. Deep Probabilistic Programming , 2017, ICLR.
[11] Kamel Mekhnacha,et al. Bayesian Programming , 2013 .
[12] A. Gelman. A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing * , 2003 .
[13] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[14] Dustin Tran,et al. Edward: A library for probabilistic modeling, inference, and criticism , 2016, ArXiv.
[15] Zoubin Ghahramani,et al. Probabilistic machine learning and artificial intelligence , 2015, Nature.
[16] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[17] Noah D. Goodman,et al. Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..