Optimal control of effective Hamiltonians.
暂无分享,去创建一个
Lukasz Rudnicki | Florian Mintert | Albert Verdeny | F. Mintert | Cord A Müller | C. A. Müller | Lukasz Rudnicki | Albert Verdeny | C. Müller
[1] P. Gaspard,et al. Non-Abelian optical lattices: anomalous quantum Hall effect and Dirac fermions. , 2009, Physical review letters.
[2] Christiane P Koch,et al. Optimal strategies for estimating the average fidelity of quantum gates. , 2013, Physical review letters.
[3] W. Ketterle,et al. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. , 2013, Physical review letters.
[4] V. Krotov,et al. Global methods in optimal control theory , 1993 .
[5] T. Seligman,et al. First experimental realization of the Dirac oscillator. , 2013, Physical review letters.
[6] Remo Guidieri. Res , 1995, RES: Anthropology and Aesthetics.
[7] F. Mintert,et al. Accurate effective Hamiltonians via unitary flow in Floquet space. , 2013, Physical review letters.
[8] M. Lewenstein,et al. Tunable gauge potential for neutral and spinless particles in driven optical lattices. , 2012, Physical review letters.
[9] Xiaolong Deng,et al. Ultracold lattice gases with periodically modulated interactions. , 2012, Physical review letters.
[10] André Eckardt,et al. Superfluid-insulator transition in a periodically driven optical lattice. , 2005, Physical review letters.
[11] Tarik Yefsah,et al. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.
[12] G. Floquet,et al. Sur les équations différentielles linéaires à coefficients périodiques , 1883 .
[13] Ericka Stricklin-Parker,et al. Ann , 2005 .
[14] Hui Zhai,et al. Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.
[15] F. Mintert,et al. Smooth optimal control with Floquet theory , 2012, 1205.5142.
[16] Xiao-Gang Wen,et al. High-temperature fractional quantum Hall states. , 2010, Physical review letters.
[17] Philipp Hauke,et al. Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields , 2013, Nature Physics.
[18] Timo O. Reiss,et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.
[19] S. S. Hodgman,et al. Negative Absolute Temperature for Motional Degrees of Freedom , 2012, Science.
[20] W. Magnus. On the exponential solution of differential equations for a linear operator , 1954 .
[21] S. Blanes,et al. The Magnus expansion and some of its applications , 2008, 0810.5488.
[22] M. Paternostro,et al. Entanglement control in hybrid optomechanical systems , 2012, 1204.0780.
[23] J. Barreiro,et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. , 2013, Physical review letters.
[24] M. Lewenstein,et al. Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.
[25] E. Rico,et al. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. , 2012, Physical review letters.
[26] D. D’Alessandro. Introduction to Quantum Control and Dynamics , 2007 .
[27] C Sias,et al. Dynamical control of matter-wave tunneling in periodic potentials. , 2007, Physical review letters.