On the modeling of surface roughness limited mobility in SOI MOSFETs and its correlation to the transistor effective field

In this paper, we discuss in detail the modeling of surface roughness (SR) scattering in single- and double-gate silicon-on-insulator (SOI) MOSFETs, where the conventional formulation based on the expected value of the electric field cannot be used. By reconsidering the Ando's original approach, we show that a model based on the eigenfunction derivatives at the Si-oxide interface can be naturally extended to SOI MOSFETs, and, furthermore, we also derive a formulation based on appropriate integrals of the eigenfunctions in the silicon film, which must replace the expected value of the field used in bulk MOSFETs. All the analytical identities used in the derivation of the model have been verified by using numerically calculated eigenvalues and wavefunctions. Our results indicate that, in ultrathin-film SOI MOSFETs, the effective field is no longer a good metric for the SR scattering and, furthermore, SR scattering affects the total mobility even at lower inversion densities than it does in bulk transistors.

[1]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[2]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[3]  T. Ando Screening Effect and Quantum Transport in a Silicon Inversion Layer in Strong Magnetic Fields , 1977 .

[4]  J. T. Clemens,et al.  Characterization of the electron mobility in the inverted <100> Si surface , 1979, 1979 International Electron Devices Meeting.

[5]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[6]  H. Sakaki,et al.  Interface roughness scattering in GaAs/AlAs quantum wells , 1987 .

[7]  Gold Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. , 1987, Physical review. B, Condensed matter.

[8]  S. Laux,et al.  Monte Carlo study of electron transport in silicon inversion layers , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[9]  C. Jungemann,et al.  Simulation of linear and nonlinear electron transport in homogeneous silicon inversion layers , 1993 .

[10]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[11]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[12]  Y. J. Park,et al.  Electron mobility behavior in extremely thin SOI MOSFET's , 1995 .

[13]  A. Toriumi,et al.  Performance and reliability concerns of ultra-thin SOI and ultra-thin gate oxide MOSFETs , 1995, Proceedings of International Electron Devices Meeting.

[14]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[15]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[16]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[17]  Ching-Te Chuang,et al.  SOI for digital CMOS VLSI: design considerations and advances , 1998, Proc. IEEE.

[18]  J. A. López-Villanueva,et al.  Monte Carlo simulation of electron transport properties in extremely thin SOI MOSFET's , 1998 .

[19]  J. A. López-Villanueva,et al.  Surface roughness at the Si–SiO2 interfaces in fully depleted silicon-on-insulator inversion layers , 1999 .

[20]  K. Hess Advanced Theory of Semiconductor Devices , 1999 .

[21]  S. Horiguchi,et al.  ELECTRONIC STRUCTURES AND PHONON-LIMITED ELECTRON MOBILITY OF DOUBLE-GATE SILICON-ON-INSULATOR SI INVERSION LAYERS , 1999 .

[22]  D. Tennant,et al.  The ballistic nano-transistor , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[23]  A. Pirovano,et al.  On surface roughness-limited mobility in highly doped n-MOSFET's , 1999 .

[24]  A. Wettstein Quantum effects in MOS devices , 2000 .

[25]  Mark S. Lundstrom,et al.  On the performance limits for Si MOSFETs: a theoretical study , 2000 .

[26]  A. Pirovano,et al.  On the correlation between surface roughness and inversion layer mobility in Si-MOSFETs , 2000, IEEE Electron Device Letters.

[27]  L. Selmi,et al.  Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicrometer technology application , 2001 .

[28]  L. Selmi,et al.  Closed- and open-boundary models for gate-current calculation in n-MOSFETs , 2001 .

[29]  D. Antoniadis,et al.  Investigating the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress , 2001, IEEE Electron Device Letters.

[30]  T. Numata,et al.  Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm , 2002, Digest. International Electron Devices Meeting,.

[31]  S. Takagi,et al.  Influences of buried-oxide interface on inversion-layer mobility in ultra-thin SOI MOSFETs , 2002 .

[32]  M. Ieong,et al.  Examination of hole mobility in ultra-thin body SOI MOSFETs , 2002, Digest. International Electron Devices Meeting,.

[33]  M. Lundstrom,et al.  Essential physics of carrier transport in nanoscale MOSFETs , 2002 .

[34]  A. Abramo,et al.  An Improved Model for Electron Mobility Degradation by Remote Coulomb Scattering in Ultra-Thin Oxide MOSFETs , 2002, 32nd European Solid-State Device Research Conference.

[35]  L. Selmi,et al.  Study of low field electron transport in ultra-thin single and double-gate SOI MOSFETs , 2002, Digest. International Electron Devices Meeting,.

[36]  L. Selmi,et al.  Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs , 2003 .

[37]  A. Abramo,et al.  Modeling of electron mobility degradation by remote Coulomb scattering in ultrathin oxide MOSFETs , 2003 .

[38]  L. Selmi,et al.  An experimental study of mobility enhancement in ultrathin SOI transistors operated in double-gate mode , 2003 .